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PROFESSOR OWEN MARTIN PHILLIPS
30 December 1930–12 October 2010

Owen Phillips grew up in Sydney, Australia, and following a distinguished record at
a State high school and in the final NSW school examinations, he enrolled in the
Faculty of Engineering at the University of Sydney in 1948. In the third year, he
transferred to the Faculty of Science to do more advanced courses in Mathematics
and Physics (with the idea of going back to Engineering after one year and qualifying
for a Science degree on the way). Owen did so well, however, that he went on to do
a fourth year in Mathematics and graduated with First Class Honours.

He then won a Scholarship to Cambridge, where he enrolled in Trinity College
and did his PhD under George Batchelor’s supervision. Before leaving Sydney, he
had married Merle Simons, and their first daughter Lynette was born while they
were living in Cambridge. They subsequently had two sons, Michael and Chris, and
a second daughter Bronwyn.

In 1957, Owen was elected to a Research Fellowship at St John’s College,
Cambridge, and soon after that he spent his first period at Johns Hopkins University.
Between 1961 and 1964, he was an Assistant Director of Research in Cambridge;
during this time, he produced a manuscript continuing the theme of his PhD,
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On the dynamics of unsteady gravity waves of 
finite amplitude 

Part 1. The elementary interactions 

By 0. M. PHILLIPS 
Mechanics Department, The J o b  Hopkins University, 

Baltimore, Maryland 

(Received 12 March 1960) 

This paper is concerned with the non-linear interactions between pairs of inter- 
secting gravity wave trains of arbitrary wavelength and direction on the surface 
of water whose depth is large compared with any of the wavelengths involved. 
An equation is set up to describe the time history of the Fourier components of 
the surface displacement in which are retained terms whose magnitude is of 
order (slope)2 relative to the linear (first-order) terms. The second-order terms 
give rise to Fourier components with wave-numbers and frequencies formed by 
the sums and differences of those of the primary components, and the amplitudes 
of these secondary components is always bounded in time and small in magnitude. 
The phase velocity of the secondary components is always different from the 
phase velocity of a free infinitesimal wave of the same wave-number. However, 
the third-order terms can give rise to tertiary components whose phase velocity is 
equal to the phase velocity of a free infinitesimal wave of the same wave-number, 
and when this condition is satisfied the amplitude of the tertiary component 
grows linearly with time in a resonant manner, and there is a continuing flux of 
potential energy from one wave-number to another. The time scale of the growth 
of the tertiary component is of order of the ( - 2)-power of the geometric mean of 
the primary wave slopes times the period of the tertiary wave. The Stokes per- 
manent wave appears as a special case, in which the tertiary wave-number is the 
same as that of the primary, but its phase is advanced by +IT. The energy transfer 
to the tertiary component in this case is usually interpreted as an increase in 
the phase velocity of the wave. 

The dynamical interactions in water of finite depth are considered briefly, and 
it is shown that the amplitude of the secondary components becomes large 
(though bounded in time) as the water depth becomes smaller than the wave- 
length of the longest primary wave. 

1. Introduction 
In  this paper, a start is made towards developing a theory to describe the 

dynamics of the non-linear interactions of a random field of gravity waves of 
finite amplitude, such as is generated by wind blowing over the sea. In  the initial 
stages of the development of an ocean wave system under the influence of wind, 
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whether the resonance interaction is possible apart from the special case dis- 
cussed in the previous section, which requires the existence of real solutions to 

(5.13) 
the equation 

where no = (gKo)*, n, = (gK,)*. Making as before, the substitutions 

g I2Ko & K,I = (2no k 

(5.14) 

-0 .5 t 
FIGURE 4. The resonance loop for third-order binary interactions. The wave-number K, 
interacts with the bound secondary component associated with KO to produce a developing 
component of wave-number 2K, - K,. The arrows represent the directions of propagation. 

it appears that resonant interactions are possible, but only for certain pairs of 
the dinereme wave-numbers & (2K0 -KJ (or for f (KO- 2K,)) for which the 
negative sign in (5.14) is relevant. Figure 4 represents the function 

2(7+4) 3 6, cos(yo-y,) = 
47 7 

(5.15) 

where 7 = K,/Ko, and illustrates the primary wave-numbers K, which can 
produce a resonant interaction with the secondary component of given wave- 
number ZK,, resulting in a continuing energy transfer to the wave-number 
f (2Ko-K,). It can readily be confirmed that these resonant tertiary wave- 
numbers do not coincide with any of the secondary wave-numbers generated, 
for this would require 

2K0-K1 = f 2K0, f ZK,, & (K,+K,) or 

or equivalently K, = - 2K0, 0, &KO, #KO, QK,, 4K0 or co, 

& (KO-&), 

2k0 = k1 + k2

2ω(k0) = ω(k1) + ω(k2)



K. Hasselmann (1931-) and V. E. Zakharov (1939-2023)

The Wave Kinetic equation

∂n(k1, t)

∂t
= ε4

∫ ∞
−∞
|T1234|2n1n2n3n4

(
1

n1
+

1

n2
− 1

n3
− 1

n4

)
δ(∆k)δ(∆ω)dk2,3,4

where

δ(∆k) = δ(k1 + k2 − k3 − k4)

δ(∆ω) = δ(ω1 + ω2 − ω3 − ω4)



Examples of resonant manifolds



The motivation: ocean wave forecasting

∂n(k1,x, t)

∂t
+ vk1 ·

∂n(k1,x, t)

∂x
= Snl + Sdiss + Sin

where Snl is the collision integral:

Snl(k1,x, t) =

∫ ∞
−∞
|T1234|2n1n2n3n4

(
1

n1
+

1

n2
− 1

n3
− 1

n4

)
δ(∆k)δ(∆ω)dk2,3,4

δ(∆k) = δ(k1 + k2 − k3 − k4)

δ(∆ω) = δ(ω1 + ω2 − ω3 − ω4)



The deterministic dynamics: the Euler equations

The fundamental assumption is that the flow is ideal: inviscid and
irrotational

The dynamics of the atmosphere is decouple from the ocean

The theory is expressed in terms of a set of PDEs for the surface
elevation, η = η(x, t), and the velocity potential, φ(x, z, t)

The equations of motion reduce to the Laplace equation + boundary
conditions

The problem is fully non linear and not amable for analytic treatment



The weakly nonlinear expansion and the “normal variable”
in Fourier space

To proceed, it is necessary to Taylor expand the solution for the
velocity potential around the flat surface (weakly nonlinear
assumption)

Such procedure allows to express the potential as a function of the
surface and the potential at the surface: the new variables are
η = η(x, t) and ψ = ψ(x, t) = φ(x, z = η, t)

One then assumes a periodic box L× L and use Fourier series to
express the variables in terms of Fourier amplitudes: ηk(t) and ψk(t)

The following variable is introduced which is related to the wave
action

ak(t) =

√
g

2ωk
ηk(t) + i

√
2ωk

g
ψk(t)



The wave-wave interaction equation

i
da1

dt
= ω1a1 + ε 3W.I.+ ε24W.I.+ ε3.....

where

3W.I. =
∑
k2,k3

(
V

(1)
123a2a3δ

23
1 + 2V

(1)
321a

∗
2a3δ

3
12 + V

(3)
123a

∗
2a

∗
3δ123

)
4W.I. =

∑
k2,k3,k4

(
T

(1)
1234a2a3a4δ

234
1 + T

(2)
1234a

∗
2a3a4δ

34
12+

+3T
(1)
4321a

∗
2a

∗
3a4δ

4
123 + T

(4)
1234a

∗
2a

∗
3a

∗
4δ1234

)
where the notation for the Kronecker deltas is the following:

δ23
1 =

{
1 if k1 = k2 + k3

0 else
δ34

12 =

{
1 if k1 + k2 = k3 + k4

0 else



Removing nonresonant interactions (the normal form
expansion)

The following near-identity transformation (from ak to bk) is introduced to
remove nonresonant interactions:

a1 = b1 + ε
∑
k2,k3

(
A

(1)
123b2b3δ

23
1 +A

(2)
123b

∗
2b3δ

3
12 +A

(3)
123b

∗
2b

∗
3δ123 + ε2....

)
to obtain the celebrated Zakharov equation (in interaction representation)

i
db1
dt

= ε2
∑

k2,k3,k4

T1234b
∗
2b3b4δ

34
12e

i∆ω34
12t

with ∆ω34
12 = ω1 + ω2 − ω3 − ω4.

The Zakharov equation is the starting point for deriving:
i) reduced models for resonant interactions
ii) statistical theory of surface gravity waves



Reduced model for 4-wave resonant interactions (Benny,
JFM 1962)

We consider three waves

b(k, t) = b1(t)δ(k− k1) + b3(t)δ(k− k3) + b4(t)δ(k− k4)

whose wavenumbers satisfy the particular (degenerated) 4-wave resonant
interaction:

2k1 = k3 + k4

2ω(k1) = ω(k3) + ω(k4)

to obtain:

iḃ1 = ε2[(T1111|b1|2 + 2T1313|b3|2 + 2T1414|b4|2)b1 + 2T1134b
∗
1b3b4]

iḃ3 = ε2[(2T1313|b1|2 + T3333|b3|2 + 2T3434|b4|2)b3 + 2T1134b
2
1b

∗
4]

iḃ4 = ε2[(2T1414|b1|2 + 2T3434|b3|2 + 2T4444|b4|2)b4 + 2T1134b
2
1b

∗
3]



Approximate solution of the reduced model

Assuming b4(t = 0) = 0 and solving asymptotically, the solution for b4 can
be found at order ε2

b4 = −i2T1134b
2
1b3t

The ”daughter” wave grows linearly in time, for small time.

Such growth (in space rather than in time) has been verified
experimentally starting from the work of M.S. Longuet-Higgins and D.
Smith, JFM 1966, and more recently by F. Bonnefoy et al. JFM 2016.

Third-order resonant wave interactions 421 

To estimate the expected positions of the peak amplitude we have inserted 
in table 1 the values of a,, a,, k,, k, and h given above, leaving (a4k4) for the 
moment undetermined. The following corrections are obtained. 

r3 
Y 

d", 5 
v 

0 
0 100 290 300 cm 

X 

FIGURE 6. The largest observed values of a4/(a1kJ2 (a,k,), at the four positions A, B, C, D. 
The solid curve represents the theoretical peak amplitude. 

Position 2 W 
A 46 0.48 
B 124 0.18 
C 155 0.15 
D 216 0.11 

TABLE 2 

€1 €2 €4 

Finite depth 0.000 - 0'054 0.000 

Finite amplitude 0.076 0.002 0.221 
Surface tension 0.006 0.001 0-030 

+0.69 (a4k4)' - 0.060 ( ~ ~ 4 k q ) ~  + ( a 4 M 2  

TABLE 3 

On substituting in equation (2.10) we obtain 

AT = 0.35 + 0.66(a,E,)2. (6.1) 

Hence, we should expect the critical ratio to be somewhat greater than 

ro = 1.736, 

and to increase very slightly with (a4k4). Since (a,k,) is of the order of 0.2 or less, 
the latter correction is small. 
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Figure 4. Amplitude of the resonant wave a4 for ε3 = 0.05 and r = rm. Left: amplitude a4

versus distance, d, for different ε1 × 103 = 10, 17, 28, 41, 56, 68 (from bottom to top). Right:
rescaled amplitude of the resonant wave a4/[dε3G(θm)] as a function of ε2

1 for different distances
d = 9.9 (!), 14.9 ("), 19.9 (∗), and 24.9 (•) m. The dashed line of unity slope is expected from
equation (2.1).

right), the scaling of the daughter-wave steepness ε4 is tested by varying ε1 ∈ [0.01; 0.1]
at the resonance condition with maximum growth rate (that is r = rm) and for fixed
ε3 = 0.05. In set B, the figure-of-eight is tested in the range θ ∈ [−10o; 40o], for fixed
steepnesses ε1 = ε3 = 0.07. This corresponds to the red line on the figure of eight in
figure 2, right. Finally, in set C, we study out-of-resonance conditions by fixing f1 = 0.9
Hz and θ = θm but changing k3 by varying r ∈ [1.1; 1.6] around rm, again with fixed
steepnesses ε1 = ε3 = 0.05. This corresponds to the dashed green line in figure 2, right.

For cases A and C, wave directions in the basin are made symmetrical θ1 = −θm/2 and
θ3 = θm/2 to maximize the uniformity of the wave field. The direction of the daughter
wave is θ4m = −23.1o which corresponds to theses cases A and C with maximum growth
rate when θ = θm. A linear frame supporting an array of twelve resistive wave probes is
setup in the direction θ4m (see figure 3, left). The distance between two successive probes
is about 2 m. In all experiments, this linear array of wave probes is indeed aligned along
the direction of the daughter wave θ4m = −23.1o. The distance d to the wavemaker and
measured along the direction of the daughter wave is ranging from d =2.5 to 25 m.

For case B, the directions of the mother waves θ1 and θ3 were chosen in such a way
that the target angle θ is obtained and that the daughter wave is aligned with the probe
array.

The sampling frequency is 100 Hz. Wave heights were recorded during about 100 s
which corresponds to steady regime of more than 50 wave periods. Typical amplitudes
are a1,3 # few cm for mother waves and a4 # few mm for daughter waves.

5. Resonant wave conditions

We report here our results for resonant degenerated quartets near maximum amplifica-
tion (case A). A typical example of a temporal evolution of wave elevation a(t) recorded
by a probe is shown in the inset of figure 3, right. From the time-series measured at
the wave probes, we select a steady-state window after the wave front passed the probe
(time window is more than 50 periods long). A Discrete Fourier Transform is applied to
the windowed signal with a standard FFT algorithm (frequency resolution is below 20
mHz). The main figure 3, right, shows the corresponding amplitude spectrum for case
A. The two mother waves were visible at frequency f1 and f3. The peak at frequency
f4 = 2f1 − f3 confirms the existence of the daugther wave, but, as expected, its ampli-



Statistical theory of surface gravity waves: A sketch of the
derivation of the WKE

We look for an evolution equation for the wave action, averaging over
initial data assumed to be i.i.d. random variables:

d〈|b1|2〉
dt

= ε22Im

∑
2,3,4

T1234〈b∗1b∗2b3b4〉ei∆ω34
12tδ34

12


d〈b∗1b∗2b3b4〉

dt
= ε2F (〈b∗1b2b3b4b∗5b∗6〉, 〈b∗1b∗2b3b∗4b5b6〉; t)

d〈b∗1b2b3b4b∗5b∗6〉
dt

= O(ε2)

The end result (after taking the large box limit and sending ε→ 0) is that

2Im

∑
2,3,4

T1234〈b∗1b∗2b3b4〉ei∆ω34
12tδ34

12

→ ε2Snl

The fourth-order correlator should be different from zero only on the
resonant manifold



The Kolmogorov-Zakharov solution of the WKE: direct
energy cascade

∂n(k1, t)

∂t
= ε4

∫ ∞
−∞
|T1234|2n1n2n3n4

(
1

n1
+

1

n2
− 1

n3
− 1

n4

)
δ(∆k)δ(∆ω)dk2,3,4

Constant flux solution

Direct cascade of energy

n(k) = CP 1/3k−4

which, in terms of one dimensional energy spectral
density function, corresponds to

E(k) ∼ k−2.5

or, using the dispersion relation, in frequency

E(ω) ∼ ω−4
The solution is isotropic, and it exists only in the presence of forcing and
dissipation



Numerical verification of KZ solution

O. M., Osborne, A.R., Serio, M., Resio, D., Pushkarev, A., Zakharov, V.E. and Brandini, C. Freely decaying weak turbulence for
sea surface gravity waves. Physical Review Letters, 2002

turbulent flows, in order to increase the inertial range, we
have used a higher-order diffusive term. More explicitly,
on the right-hand side of Eqs. (1) and (2), we have
added, respectively, two extra terms: !!"!r2#n and
!""!r2#m#, where ! and " represent an artificial vis-
cosity coefficient and r2 is the horizontal Laplacian. If n
and m are greater than 1, the viscosity is known as
‘‘hyperviscosity.’’ It should be noted that a very high
power of the Laplacian unfortunately could bring about
the ‘‘bottleneck effect’’ [28], i.e., an accumulation of
energy at high wave numbers that could distort the power
law expected [29]. In our numerical simulations, we use
! $ " $ 3% 104 and n $ m $ 8. These values have
been selected after some trial during the development
of the numerical code. In our numerical simulations we
did not impose any dissipation at low wave numbers.

Concerning the initial conditions for numerical simu-
lations, it has to be underlined that wind waves are not
isotropic. For a realistic construction of the initial con-
ditions, a directional frequency power spectrum S"!; $#
is considered [S"!;$# is an energy density as a function of
wave direction and frequency]. As is usual in ocean
waves, the angular dependence is factorized as follows:
S"!; $# $ P"!#G"$# with

R
%
!%G"$#d$ $ 1 [16,23].With-

out loss of generality here we have used a cosine-squared
function for G"$# in which only the first lobe (relative to
the dominant wave direction) is considered [16,30] [the
shape of the spreading function G"$# is the same used
recently by Tanaka [23]; see also [31]]. It has to be under-
lined that, even though our initial condition is not iso-
tropic, weak turbulence theory predicts Kolmogorov
spectra with some very small correction due to anisot-
ropy [2,18]. P"!# is chosen to be any localized spectrum
at low frequencies. We have performed numerical simu-
lations with P"!# taken to be a Gaussian function or a
‘‘chopped JONSWAP’’ (Joint Oceanographic North Sea
Wave Analysis Program) spectrum [30] (a JONSWAP
spectrum with amplitudes equal to zero for frequencies
greater than 1.5 times the peak frequency). Both Gaussian
and JONSWAP spectra led to the same results in terms of
the turbulent cascade. For the case of the Gaussian func-
tion, wave numbers lower than a selected threshold have
been set to zero in order to avoid extremely long and large
waves. From the directional frequency spectrum, S"!; $#,
the two-dimensional surface #"x; y; t $ 0# is computed
using first the linear dispersion relation to move from
"!; $# to wave number "kx; ky# coordinates, and then the
inverse Fourier transform with the random phase approxi-
mation. The velocity potential  "x; y; t $ 0# is then ob-
tained from the surface using linear theory.

In our numerical simulations, the spectrum at time t $
0 was centered at !0 $ 0:628 rad=s; i.e., we are consid-
ering 10 s waves. Using the linear dispersion relation in
infinite water depth, this corresponds to a wavelength & $
2%=k0 $ 156 m. The wave steepness, " $ k0Hs=2, the
standard nonlinear parameter for deep-water waves,

was chosen to be around 0.15 (Hs is the significant wave
height and has been computed as 4 times the standard
deviation of the surface elevation). This value is typical
for wind waves. The wave field was contained in a square
domain (the resolution is 256% 256) of length L $
1417:6 m. The time step considered was 1=50 the domi-
nant frequency; i.e., !t $ 0:2 s. In Fig. 1 we show the
evolution of the wave-number spectrum for different real
times (t $ 0, 0.1, 0.5, 1 h). We see that, as expected, the
tail of the spectrum begins to grow. This process seems to
be quite rapid: as shown in the figure, after a few domi-
nant wave periods considerable energy is already injected
into high wave numbers. The dynamical process in which
the spectrum approaches the ‘‘correct’’ power law then
slows, especially for low wave numbers. This may be due
to the frozen turbulent phenomenon [32], i.e., a condition
in which the energy fluxes towards high wave numbers
are reduced because of the discreteness of the spectrum.
Note that there is also a downshifting of the peak of the
spectrum towards lower wave numbers; as a consequence,
the wave steepness subsequently decreases over time. The
time scale of the nonlinear energy transfer becomes
larger and larger. In Fig. 2 we show the spectrum of the
surface elevation after 4 h real time (the steepness of the
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FIG. 1. Wave spectra at different times.
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FIG. 2. Wave spectrum at t $ 4 h. A k!2:5 (dashed line) and a
k!3 (dotted line) power law are also plotted.
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Numerical verification of KZ solution

Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

A. I. Dyachenko,1,* A. O. Korotkevich,1,† and V. E. Zakharov1,2,3

1Landau Institute for Theoretical Physics, 2, Kosygin Street, Moscow, 119334, Russian Federation
2University of Arizona, Tucson, Arizona 85721, USA

3Waves and Solitons LLC, 738 W. Sereno Drive, Gilbert, Arizona 85233, USA
(Received 26 August 2003; published 2 April 2004)

We study the long-time evolution of surface gravity waves on deep water excited by a stochastic
external force concentrated in moderately small wave numbers. We numerically implemented the
primitive Euler equations for the potential flow of an ideal fluid with free surface written in
Hamiltonian canonical variables, using the expansion of the Hamiltonian in powers of nonlinearity
of terms up to fourth order. We show that because of nonlinear interaction processes a stationary Fourier
spectrum of a surface elevation close to hj!kj2i! k"7=2 is formed. The observed spectrum can be
interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.

DOI: 10.1103/PhysRevLett.92.134501 PACS numbers: 47.27.Eq, 05.45.–a, 47.11.+j, 47.35.+i

Kolmogorov was born in 1903. Now, in the year of his
centenary, his greatness is obvious not only for pure and
applied mathematicians but also all physicists appreciate
his pioneering works on powerlike cascade spectra in
turbulence of the incompressible fluid [1]. It is obvious
now that cascade processes, similar to the Kolmogorov
cascade of energy, play a very important role in many
different fields of physics, such as nonlinear optics [2],
plasma physics [3], hydrodynamics of superfluid He4, and
so forth.

In all these cases the physical situations are similar.
There is an ensemble of slowly decaying, weakly non-
linear waves in a medium with dispersion. Such systems
have to be described statistically. However, this is not
traditional statistical mechanics, because the ensembles
are very far from thermodynamic equilibrium. Neverthe-
less, one can develop a systematic approach for the sta-
tistical study of weakly nonlinear waves. This is the
theory of weak (or wave) turbulence [4]. The main tools
here are the kinetic equations for squared wave ampli-
tudes. These equations describe the nonlinear resonant
interaction processes taking place in the wave systems. As
in the turbulence in incompressible fluid, these processes
lead to the cascades of some constants of motion (energy,
wave action, momentum, etc.) along the k space. In iso-
tropic systems it might be either a direct cascade of
energy from small to large wave numbers or an inverse
cascade of wave action to small wave numbers [5]. In an
anisotropic system the situation could be much more
complicated [6].

The brilliant conjecture of Kolmogorov still is a hy-
pothesis, supported by ample experimental evidence. On
the contrary, the existence of powerlike Kolmogorov
spectra, describing cascades in weak turbulence, is a
rigorous mathematical fact. These spectra are the exact
solutions of the stationary homogeneous kinetic equation,
completely different from the thermodynamic Rayleigh-
Jeans solutions.

Nevertheless, the case is not closed. The weak-
turbulent theory itself is based on some assumptions,
like phase stochasticity and the absence of coherent
structures. This is the reason why justification of weak-
turbulent theory is an urgent and important problem.

This justification can be done by a direct numerical
solution of the primitive dynamic equation describing
the wave ensemble. In pioneering works by Majda, Mc-
Laughlin, and Tabak [7] it was done for the 1D wave
system. The results obtained by these authors are not
easily interpreted. In some cases they demonstrate
Kolmogorov-type spectra, and in other cases power spec-
tra with essentially different exponents.

In Ref. [8] deviation from weak-turbulent theory was
explained by the role of coherent structures (solitons,
quasisolitons, and collapses). If a 1D system is free from
coherent structures, weak-turbulent spectra are observed
with a good deal of evidence [9–11].

In spite of their heuristic value, the 1D models so far
developed have no direct physical application. Real
physical systems, where wave turbulence is realized, are
at least two dimensional. The most natural and important
examples are capillary and gravity waves on deep water.
A weak-turbulent theory of capillary waves was devel-
oped by Zakharov and Filonenko in 1967 [12], who found
that the correlation function of elevation !#~rr; t$ has to
be hj! ~kkj2i! k"19=4. This result was supported by labora-
tory experiments, performed independently by three
groups (in UCLA [13], Niels Bohr Institute [14], and
the Solid State Physics Institute in Chernogolovka,
Russia [15,16]). The spectrum k"19=4 was obtained by a
direct numerical simulation of Euler equation for incom-
pressible fluid with free surface by Pushkarev and
Zakharov [17–19].

The most interesting example of 2D wave ensembles
demonstrating weak-turbulent cascades is a system of
gravity waves on the surface of deep water. We are sure
that a weak-turbulent theory of these waves is key to
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Fk ! fkeiR~kk"t#;

fk !
(

4F0
"k$kp1#"kp2$k#

"kp2$kp1#2 ; if kp1 < k< kp2;

fk ! 0; otherwise;

D~kk ! !k ~kk;

!k !

8

>
<

>
:

$!1; k % kp1;

0; kp1 < k< kp2;

$!2"k$ kd#2; k > kd:

(6)

Here R~kk"t# is a uniformly distributed random number in
the interval "0; 2"# for each ~kk. We have applied an implicit
difference scheme that keeps the main property of this
system—conservation of the Hamiltonian in the absence
of pumping and damping.

Equations (4) were numerically simulated in the peri-
odic domain 2"& 2". The size of the grid was 512&
512 points. Gravity acceleration g was equal to one.
Parameters of the damping and pumping in (6) were the
following: kp1 ! 5, kp2 ! 10, and kd ! 100. Thus, the
inertial interval is equal to a decade.

In the simulations we paid special attention to the
problems that could ‘‘damage’’ the calculations. First of
all, it is the ‘‘bottleneck’’ phenomenon that was studied in
Ref. [26]. The effect consists in accumulation of energy in
k space ahead of the dissipation region, if the dissipation
is too large. This effect is very fast, but can be effectively
suppressed by a proper choice of damping value !2 in
dissipation (6) in the case of moderate pumping values
F0. On the other hand, the F0 value should not be too
small to secure a wave cascade on the discrete grid. For
the case of capillary waves it was examined in detail in
[27]. The second problem is the accumulation of ‘‘con-
densate’’ in low wave numbers due to inverse cascade.
Buildup of condensate can be overcome by simple adap-
tive damping in the small wave numbers.

After some time the system reaches the stationary
state, where the balance between pumping and damping
takes place. In this state an important parameter is the
ratio of nonlinear energy to the linear one "H1 'H2#=H0.

For example, for the external force F0 ! 2& 10$4,
!1 ! 1& 10$3, !2 ! 665 the level of nonlinearity was
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FIG. 1. Hamiltonian as a function of time. Quasistationary
state is formed at t ’ 5000.
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The ω−4 and ω−5 controversy

O. Phillips in 1957 (JFM), based on a dimensional argument,
proposed a frequency decay of the spectrum of the type:

E(ω) ∼ g2ω−5

K. Hasselmann in 1973 performed experiments in the North Sea and
parametrized the spectrum with a ω−5 tail

These results were in disagreement with Zakharov theory
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compute d  with  the  me thod  of le a s t s qua re s  
unde r the  condition tha t the  va lue  of m wa s  
fixe d to  be  4. Compute d  va lue s  of a  a re  s hown 
in Column 5 of Ta ble  3 a nd  Column 4 of Ta ble  
4 for S e rie s  A a nd B, re s pe ctive ly. In  Fig. 11 
is  s hown the  re la tion be twe e n a  a nd u . ,  whe re  
the  va lue s  of u ,  for S e rie s  B a re  3-minute  
a ve ra ge  va lue s , which a re  lis te d in Column 5 
of Ta ble  4. It is  conclude d from the  figure  
tha t a  is  proportiona l to  u , ,  a nd  the  formula  
(24) is  sa tis fied. Th e  va lue s  of a~ ha ve  the n  
be e n compute d a nd s hown in Column 6 of Ta ble  
3 a nd  Column 6 of Ta ble  4 for S e rie s  A a nd 
B, re s pe ctive ly. Th e  me a n va lue  of a3 with  
its  s ta nda rd  de via tion is  

a 3=0.062__0.010 (29) 

for S e rie s  A, a nd 

a ,=0.065_+0.010 (30) 

for S e rie s  B. In  Fig. 11 the  line  is  d ra wn with  
the  a3 va lue  of S e rie s  A, s ince  it conta ins  a  
ra nge  of u .  wide r tha n  S e rie s  B. 

In  Fig. 12 is  s hown the  powe r s pe c trum of 
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figure , the  s olid line  s hows  (24) with  a ,=0 .0 6 2  
a nd the  broke n  line  s hows  (23) with  a p=0.0074. 
In  Fig. 13 a re  s hown powe r s pe ctra  of the  firs t 
s e ve ra l runs  of S e rie s  B, which ha ve  be e n 
e xtra c te d  a s  e xa mple s  from the  e ntire  figure s  
d ra wn by a n a u toma tic  dra fte r. Th e  le ft pa rt 
of the  figure  s hows  the  powe r s pe ctra  norma lize d 
by (23) with  a ~=0.0074, a nd  the  right pa rt of 
the  figure  s hows  the  powe r s pe ctra  norma lize d 
by (24) with  a ~--0.062. It is  s e e n from Figs . 
12 a nd 13 tha t the  gu.a-4-form of wind wa ve  
s pe ctra  is  in a gre e me nt with  our pre s e nt fie ld 
da ta , e xce pt the  ra nge  of h ighe r fre que ncie s  
tha n  3 Hz, a ppa re n tly be tte r tha n  the  P hillips ' 
g2a-S-form. Th e  powe r s pe ctra  of the  re s t of 
the  runs  s how a lmos t the  s a me  te nde ncy. 

Th e  two va lue s  of a3 s hown by (29 )a nd  (30) 
for S e rie s  A a nd B a re  ne a rly the  s a me  with  
e a ch othe r, bu t no t e qua l to  0.020, tha t wa s  
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Fig. 12. An e xa mple  of power spectrum 
for Run no. 18 of Series  A. 

Taken from Kawai, S., Okada, K. and Toba, Y. Journal of the Oceanographical

Society of Japan (1977)



Experimental results in the ocean: the ω−4 spectrum

����������������������������������������	���
����




Experimental results in the ocean: the ω−4 spectrum



Lab experiments related to direct energy cascade spectrum
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Figure 4
(a) Experimental gravity–capillary wave spectrum Sω and best !ts in the gravity Sgω and capillary Scω regimes, with fgc the crossover frequency. Panel a adapted with
permission from Cazaubiel et al. (2019b). (b) Capillary and gravity exponents of frequency power law spectra as a function of random forcing strength for different forcing
bandwidths. Dashed lines correspond to weak wave turbulence predictions. Panel b adapted with permission from Falcon et al. (2007b). (c) Wave steepness–dependent
gravity exponents in different basin sizes and boundary conditions. (d) Capillary wave turbulence spectrum Sω in a low-gravity environment. Panel d adapted with
permission from Falcón et al. (2009); inset courtesy of Novespace. (e, f ) Wave statistics: (e) non-Gaussian distribution of dimensionless wave elevation η(t )/

√
〈η2〉t , and ( f )

distribution of the dimensionless second-order differences of wave elevation, [η(t + τ ) − 2η(t) + η(t − τ )]/σ τ , during a time lag τ , as a signature of intermittency. Panels e
and f adapted with permission from Falcon & Laroche (2011) and Falcon et al. (2007a), respectively. Abbreviations: PDF, probability density function; rms, root mean
square.
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wave turbulence. Annual Review of Fluid Mechanics (2022)



The data from Acqua Alta Oceanographic Tower

Using two cameras mounted at 12.5 m above the mean sea surface
pointing to the same area, it is possible to measure the surface elevation in
space and time

The data set are described in Guimarães, P. V., et al. “A data set of
sea surface stereo images to resolve space-time wave fields. Sci.
Data, 7, 145.” (2020).



The data from Acqua Alta Oceanographic Tower

Spatial resolution: 0.2 m
Temporal resolution: 1/12 s
Total temporal length: 20000 frames (almost 28 minutes)



The frequency spectrum



Wave number spectrum



The (k − ω) spectrum



The normalized fourth-order correlator

|〈η(k1, t)
∗η(k2, t)

∗η(k3, t)η(k1 + k2 − k3, t)〉t|
〈|η(k1, t)||η(k2, t)||η(k3, t)||η(k1 + k2 − k3, t)|〉t



Filtering in the (k − ω) spectrum



Normalized fourth-order correlator

|〈η∗(k1, t)η
∗(k2, t)η(k3, t)η(k1 + k2 − k3, t)〉t|

〈|η(k1, t)||η(k2, t)||η(k3, t)||η(k1 + k2 − k3, t)|〉t

For the black line, the following resonant condition is
satisfied

k1 = (0, 3.49), k2 = (0, 3.49),

k3 = (k3,x, 3.49), k4 = (−k3,x, 3.49)

ω1 − ω2 = ω3 − ω4



Normalized fourth-order correlator

|〈η∗(k1, t)η
∗(k2, t)η(k3, t)η(k1 + k2 − k3, t)〉t|

〈|η(k1, t)||η(k2, t)||η(k3, t)||η(k1 + k2 − k3, t)|〉t



Normalized fourth-order correlator

|〈η∗(k1, t)η
∗(k2, t)η(k3, t)η(k1 + k2 − k3, t)〉t|

〈|η(k1, t)||η(k2, t)||η(k3, t)||η(k1 + k2 − k3, t)|〉t



Data from Black-Sea

|〈η∗(k1, t)η
∗(k2, t)η(k3, t)η(k1 + k2 − k3, t)〉t|

〈|η(k1, t)||η(k2, t)||η(k3, t)||η(k1 + k2 − k3, t)|〉t



Data from Yellow-Sea

|〈η∗(k1, t)η
∗(k2, t)η(k3, t)η(k1 + k2 − k3, t)〉t|

〈|η(k1, t)||η(k2, t)||η(k3, t)||η(k1 + k2 − k3, t)|〉t


