Evidence of resonant interactions in ocean waves

Miguel Onorato

Universita di Torino, Dipartimento di Fisica
miguel.onorato®@unito.it

In collaboration with
D. Maestrini and G. Dematteis Universita di Torino - Italy
A. Benetazzo ISMAR- CNR - ltaly

SRS SIM' NS

FOUNDATION

September 3, 2024



@ Motivation
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@ Deterministic four-wave resonances

@ Four-wave resonances in random waves
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@ Verification of some of the predictions of WT theory from data

Discussion
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FroURE 4. The resonance loop for third-order binary interactions. The wave-number K,
interacts with the bound secondary iated with K, to d is
2K,~K,. Tl directi

2ko = k1 + ko
2w(ko) = w(k1) + w(k2)




K. Hasselmann (1931-) and V. E. Zakharov (1939-2023)

The Wave Kinetic equation
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S(AK) = 6(k1 + ko — ks — ka)
0(Aw) = §(w1 + wo — w3 — wy)



Examples of resonant manifolds

—k; = (0,3.49) , ky = (0,3.49)
—k; = (2.52,2.52) , ky = (-2.52,2.52)
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The motivation: ocean wave forecasting
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where S,,; is the collision integral:
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The deterministic dynamics: the Euler equations

@ The fundamental assumption is that the flow is ideal: inviscid and
irrotational

@ The dynamics of the atmosphere is decouple from the ocean

@ The theory is expressed in terms of a set of PDEs for the surface
elevation, n = n(x,t), and the velocity potential, ¢(x, z,t)

@ The equations of motion reduce to the Laplace equation + boundary
conditions

@ The problem is fully non linear and not amable for analytic treatment



The weakly nonlinear expansion and the “normal variable”

in Fourier space

@ To proceed, it is necessary to Taylor expand the solution for the
velocity potential around the flat surface (weakly nonlinear
assumption)

@ Such procedure allows to express the potential as a function of the
surface and the potential at the surface: the new variables are

n =mn(x,t) and ¥ = P(x,t) = ¢(x,2z =n,t)
@ One then assumes a periodic box L x L and use Fourier series to
express the variables in terms of Fourier amplitudes: 7y () and vy (¢)

@ The following variable is introduced which is related to the wave

action
2
ax(t) = \/%kﬁk(?ﬁ) +1 %@bk(f)



The wave-wave interaction equation
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where the notation for the Kronecker deltas is the following:
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Removing nonresonant interactions (the normal form

expansion)

The following near-identity transformation (from ay to by) is introduced to
remove nonresonant interactions:

a1 =bi+e Y (Alpsbabsd? + ATRbsbsdY, + ALLb00125 + €2....)
k2,k3

to obtain the celebrated Zakharov equation (in interaction representation)

.dby

AL,34
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ko,ks3,ky

with Aw?g =wy + Wy — w3 — wy4.

The Zakharov equation is the starting point for deriving:
i) reduced models for resonant interactions

ii) statistical theory of surface gravity waves



Reduced model for 4-wave resonant interactions (Benny,

JFM 1962)

We consider three waves

b(k,t) = b1(t)d(k — ki) + b3(t)d(k — k3) + ba(t)d(k — ka)

whose wavenumbers satisfy the particular (degenerated) 4-wave resonant
interaction:

2k; = k3 +ky
2w(k1) = w(ks) + w(ky)
to obtain:
iby = €[(Tr111|b1]* + 2T1313]b3] + 2T1414]ba|?)b1 + 2T1134b7b3b4]
ibs = €*[(2T1313|b1|* + Tssss|bs|* + 2Ts434[ba|*)bs + 2T1134b7b3]
iby = €*[(2T1414|b1|? + 2T3434|b3|* + 2T 44 |ba|*)bs + 2T'134b7b5]



Approximate solution of the reduced model

Assuming bs(t = 0) = 0 and solving asymptotically, the solution for by can

be found at order €2
by = —i2T134b3bst

The "daughter” wave grows linearly in time, for small time.

@ Such growth (in space rather than in time) has been verified
experimentally starting from the work of M.S. Longuet-Higgins and D.
Smith, JFM 1966, and more recently by F. Bonnefoy et al. JFM 2016.
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Statistical theory of surface gravity waves: A sketch of the

derivation of the WKE

We look for an evolution equation for the wave action, averaging over
initial data assumed to be i.i.d. random variables:

d(|br[*)
dt

= 6223111 Z T1234<b>{b§bgb4>6iAw%§t(5%§
2,3,4
d(brb3bsb P
<1;t34> = € F((b1babsbabib), (bb3bsbibsbe); t)
d(bibabsbsbbg)
dt
The end result (after taking the large box limit and sending € — 0) is that

=0()
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The fourth-order correlator should be different from zero only on the
resonant manifold



The Kolmogorov-Zakharov solution of the WKE: direct

energy cascade

on(ky,t ° 1 1 1
Oniky,t) = 64/ |Ti234|*n1nanang < e
ot oo ny

Constant flux solution

@ Direct cascade of energy
n(k) = CP/E*

which, in terms of one dimensional energy spectral
density function, corresponds to

E(k) ~ k72.5

or, using the dispersion relation, in frequency

B(w) ~w™
@ The solution is isotropic, and it exists only in the presence of forcing and
dissipation



Numerical verification of KZ solution

O. M., Osborne, A.R., Serio, M., Resio, D., Pushkarev, A., Zakharov, V.E. and Brandini, C. Freely decaying weak turbulence for
sea surface gravity waves. Physical Review Letters, 2002
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FIG. 2. Wave spectrum at f = 4 h. A k=2 (dashed line) and a
k™3 (dotted line) power law are also plotted.



Numerical verification of KZ solution
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FIG. 2. Averaged spectrum of surface elevation {Im¢l?). Line
~k7/? is also shown.
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The w=* and w™> controversy

e O. Phillips in 1957 (JFM), based on a dimensional argument,
proposed a frequency decay of the spectrum of the type:

B(w) ~ g*w™

o K. Hasselmann in 1973 performed experiments in the North Sea and
parametrized the spectrum with a w™? tail

@ These results were in disagreement with Zakharov theory



Experimental evidence of the w™* spectrum in the ocean

o irad sact)
Fig. 12. An example of power spectrum
for Run no. 18 of Series A.

Taken from Kawai, S., Okada, K. and Toba, Y. Journal of the Oceanographical
Society of Japan (1977)



Experimental results in the ocean: the w™" spectrum

JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 13

On the Theory of the Equilibrium Range in the Spectrum
of Wind-Generated Gravity Waves

S. A. KITAIGORODSKI1I

Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, MD 21218
(Manuscript received 23 November 1982, in final form 14 February 1983)

ABSTRACT

It is shown that an exact analog of Kolmogoroff’s spectrum in a random field of weakly nonlinear surface
gravity waves gives a spectral form for frequency spectra S(w) ~ w™ in close agreement with the results of

recent observational studies. The X theory also indis the ofa range of
fr ies) where the iation from K fi’s equilibrium is due to gravitational
instability (wave king). Be f this it is that the equilibrium form for the spectrum of wind-

generated waves has two asymptotic regimes: Kolmogoroff ’s and Phillips’ type of equilibrium with a relatively
rapid transition from the first to the second. The experimental data favor such an interpretation.



Experimental results in the ocean: the w™" spectrum

JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 17

A Reanalysis of the Spectra Observed in JONSWAP
J. A. BATTIES, T. J. ZITMAN AND L. H. HOLTHUUSEN
Dept. of Civil Engineering, Delft U ity of Technology, Delfi, The Netherland
(Manuscript received 28 July 1986, in final form 4 March 1987)

ABSTRACT

The frequency spectra of wind-driven waves observed during JONSWAP are reanalyzed to establish whether
the Toba formulation for the high-frequency tail (~f ) fits the data better than the Phillips formulation (~f %)
used originally in the JONSWAP project. The results indicate that the f~* tail provules a statistically better fit
to the observed spectra, The proportionality factor in Toba’s which is i cted to be a
universal constant, is found to be uncorrelated with the growth stage of the waves, There is a relatively large
scatter in the observed values, which can partly be ascribed to the influence of tidal currents.




Lab experiments related to direct energy cascade spectrum
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Figure from: Falcon, E. and Mordant, N., Experiments in surface gravity-capillary
wave turbulence. Annual Review of Fluid Mechanics (2022)



The data from Acqua Alta Oceanographic Tower

Using two cameras mounted at 12.5 m above the mean sea surface
pointing to the same area, it is possible to measure the surface elevation in
space and time

@ The data set are described in Guimaraes, P. V., et al. “A data set of
sea surface stereo images to resolve space-time wave fields. Sci.
Data, 7, 145." (2020).



The data from Acqua Alta Oceanographic Tower
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Spatial resolution: 0.2 m
Temporal resolution: 1/12's
Total temporal length: 20000 frames (almost 28 minutes)




The frequency spectrum
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Wave number spectrum
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The (k — w) spectrum




The normalized fourth-order correlator

|(n(k1,t)* n(ks, t)*n(ks, t)n(ks + ko — ks, t));
|

|
(In(k1,t)[|n(ke, t)]|n(ks, t)|[n(ks + ko — ks, t)|):

k; =(0,3.49) - ky =(0,3.49)




Filtering in the (k — w) spectrum

log |7j(k, w)|?




Normalized fourth-order correlator

|(n* (k1, t)n* (ko t)n(ks, t)n(ks + ko — ks, 1))y
|

’
(In(k1,t)[|n(ks, t)||n(ks, t)|[n(ks + ko — ks, t)|):

k; =(0,3.49) , ky =(0,3.49)
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Normalized fourth-order correlator

(In(k1,

|(n* (k1,t)n" (ko, t)n(ks, t)n(ks + ko — ks, 1)),
|

|
t)[In(ka, t)||n(ks, t)|[n(ks + ko — ks, t)|)¢

Kk, =(2.52,2.52) , ky =(-2.52,2.52)
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Normalized fourth-order correlator

|(n* (k1, t)n* (ko, t)n(ks, t)n(ks + ko — k3, 1)),
(In(ky1,t)|[n(ke, t)||n(ks, t)||In(ks + ko — k3, 1)

k; =(0,4.46) , ky =(0,5.43)
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Data from Black-Sea
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Data from Yellow-Sea

|(n* (k1, t)n* (ko, t)n(ks, t)n(ks + ko — k3, 1)),
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