Evidence of resonant interactions in ocean waves

Miguel Onorato

Università di Torino, Dipartimento di Fisica miguel.onorato@unito.it

In collaboration with D. Maestrini and G. Dematteis Università di Torino - Italy A. Benetazzo ISMAR- CNR - Italy

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

September 3, 2024

- Motivation
- An introduction to resonant interactions in water waves
- Deterministic four-wave resonances
- Four-wave resonances in random waves
- Experiments from Acqua Alta Tower in the Adriatic Sea
- Verification of some of the predictions of WT theory from data

Discussion

On the dynamics of unsteady gravity waves of finite amplitude

Part 1. The elementary interactions

By O. M. PHILLIPS Mechanics Department, The Johns Hopkins University, Baltimore, Marvland

(Received 12 March 1960)

FIGURE 4. The resonance loop for third-order binary interactions. The wave-number K_1 interacts with the bound secondary component associated with K_0 to produce a developing component of wave-number $2K_0 - K_1$. The arrows represent the directions of propagation.

 $2\mathbf{k_0} = \mathbf{k_1} + \mathbf{k_2}$ $2\omega(k_0) = \omega(k_1) + \omega(k_2)$

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

K. Hasselmann (1931-) and V. E. Zakharov (1939-2023)

The Wave Kinetic equation

$$\frac{\partial n(\mathbf{k}_1,t)}{\partial t} = \epsilon^4 \int_{-\infty}^{\infty} |T_{1234}|^2 n_1 n_2 n_3 n_4 \left(\frac{1}{n_1} + \frac{1}{n_2} - \frac{1}{n_3} - \frac{1}{n_4}\right) \delta(\Delta k) \delta(\Delta \omega) d\mathbf{k}_{2,3,4}$$

where

Examples of resonant manifolds

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

The motivation: ocean wave forecasting

$$\frac{\partial n(\mathbf{k}_{1},\mathbf{x},t)}{\partial t} + v_{\mathbf{k}_{1}} \cdot \frac{\partial n(\mathbf{k}_{1},\mathbf{x},t)}{\partial \mathbf{x}} = S_{nl} + S_{diss} + S_{ir}$$

where S_{nl} is the collision integral:

$$\begin{split} S_{nl}(\mathbf{k}_{1}, \mathbf{x}, t) &= \int_{-\infty}^{\infty} |T_{1234}|^{2} n_{1} n_{2} n_{3} n_{4} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} - \frac{1}{n_{3}} - \frac{1}{n_{4}}\right) \delta(\Delta k) \delta(\Delta \omega) d\mathbf{k}_{2,3,4} \\ \delta(\Delta k) &= \delta(\mathbf{k}_{1} + \mathbf{k}_{2} - \mathbf{k}_{3} - \mathbf{k}_{4}) \\ \delta(\Delta \omega) &= \delta(\omega_{1} + \omega_{2} - \omega_{3} - \omega_{4}) \end{split}$$

The deterministic dynamics: the Euler equations

- The fundamental assumption is that the flow is ideal: inviscid and irrotational
- The dynamics of the atmosphere is decouple from the ocean
- The theory is expressed in terms of a set of PDEs for the surface elevation, $\eta = \eta(\mathbf{x}, t)$, and the velocity potential, $\phi(\mathbf{x}, z, t)$
- The equations of motion reduce to the Laplace equation + boundary conditions
- The problem is fully non linear and not amable for analytic treatment

ション ふゆ アメビア メロア しょうくり

The weakly nonlinear expansion and the "normal variable" in Fourier space

- To proceed, it is necessary to Taylor expand the solution for the velocity potential around the flat surface (weakly nonlinear assumption)
- Such procedure allows to express the potential as a function of the surface and the potential at the surface: the new variables are $\eta = \eta(\mathbf{x}, t)$ and $\psi = \psi(\mathbf{x}, t) = \phi(\mathbf{x}, z = \eta, t)$
- One then assumes a periodic box $L \times L$ and use Fourier series to express the variables in terms of Fourier amplitudes: $\eta_{\mathbf{k}}(t)$ and $\psi_{\mathbf{k}}(t)$
- The following variable is introduced which is related to the wave action

$$a_{\mathbf{k}}(t) = \sqrt{rac{g}{2\omega_k}}\eta_{\mathbf{k}}(t) + i\sqrt{rac{2\omega_k}{g}}\psi_{\mathbf{k}}(t)$$

The wave-wave interaction equation

.

$$i\frac{da_1}{dt} = \omega_1 a_1 + \epsilon \; 3W.I. + \epsilon^2 4W.I. + \epsilon^3....$$

where

$$3W.I. = \sum_{k_2,k_3} \left(V_{123}^{(1)} a_2 a_3 \delta_1^{23} + 2V_{321}^{(1)} a_2^* a_3 \delta_{12}^3 + V_{123}^{(3)} a_2^* a_3^* \delta_{123} \right)$$

$$4W.I. = \sum_{k_2,k_3,k_4} \left(T_{1234}^{(1)} a_2 a_3 a_4 \delta_1^{234} + T_{1234}^{(2)} a_2^* a_3 a_4 \delta_{12}^{34} + 3T_{4321}^{(1)} a_2^* a_3^* a_4 \delta_{123}^4 + T_{1234}^{(4)} a_2^* a_3^* a_4^* \delta_{1234} \right)$$

where the notation for the Kronecker deltas is the following:

$$\delta_1^{23} = \begin{cases} 1 & \text{if } \mathbf{k}_1 = \mathbf{k}_2 + \mathbf{k}_3 \\ 0 & else \end{cases} \qquad \qquad \delta_{12}^{34} = \begin{cases} 1 & \text{if } \mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{k}_4 \\ 0 & else \end{cases}$$

Removing nonresonant interactions (the normal form expansion)

The following near-identity transformation (from a_k to b_k) is introduced to remove nonresonant interactions:

$$a_1 = b_1 + \epsilon \sum_{k_2, k_3} \left(A_{123}^{(1)} b_2 b_3 \delta_1^{23} + A_{123}^{(2)} b_2^* b_3 \delta_{12}^3 + A_{123}^{(3)} b_2^* b_3^* \delta_{123} + \epsilon^2 \dots \right)$$

to obtain the celebrated Zakharov equation (in interaction representation)

$$i\frac{db_1}{dt} = \epsilon^2 \sum_{k_2,k_3,k_4} T_{1234} b_2^* b_3 b_4 \delta_{12}^{34} e^{i\Delta\omega_{12}^{34}t}$$

with $\Delta \omega_{12}^{34} = \omega_1 + \omega_2 - \omega_3 - \omega_4$. The Zakharov equation is the starting point for deriving: i) reduced models for resonant interactions ii) statistical theory of surface gravity waves

Reduced model for 4-wave resonant interactions (Benny, JFM 1962)

We consider three waves

$$b(\mathbf{k},t) = b_1(t)\delta(\mathbf{k}-\mathbf{k}_1) + b_3(t)\delta(\mathbf{k}-\mathbf{k}_3) + b_4(t)\delta(\mathbf{k}-\mathbf{k}_4)$$

whose wavenumbers satisfy the particular (degenerated) 4-wave resonant interaction:

$$2\mathbf{k_1} = \mathbf{k_3} + \mathbf{k_4}$$
$$2\omega(k_1) = \omega(k_3) + \omega(k_4)$$

to obtain:

$$\begin{split} &i\dot{b}_{1} = \epsilon^{2}[(T_{1111}|b_{1}|^{2} + 2T_{1313}|b_{3}|^{2} + 2T_{1414}|b_{4}|^{2})b_{1} + 2T_{1134}b_{1}^{*}b_{3}b_{4}] \\ &i\dot{b}_{3} = \epsilon^{2}[(2T_{1313}|b_{1}|^{2} + T_{3333}|b_{3}|^{2} + 2T_{3434}|b_{4}|^{2})b_{3} + 2T_{1134}b_{1}^{2}b_{4}^{*}] \\ &i\dot{b}_{4} = \epsilon^{2}[(2T_{1414}|b_{1}|^{2} + 2T_{3434}|b_{3}|^{2} + 2T_{4444}|b_{4}|^{2})b_{4} + 2T_{1134}b_{1}^{2}b_{3}^{*}] \end{split}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Approximate solution of the reduced model

Assuming $b_4(t=0)=0$ and solving asymptotically, the solution for b_4 can be found at order ϵ^2

$$b_4 = -i2T_{1134}b_1^2b_3t$$

The "daughter" wave grows linearly in time, for small time.

 Such growth (in space rather than in time) has been verified experimentally starting from the work of M.S. Longuet-Higgins and D. Smith, JFM 1966, and more recently by F. Bonnefoy et al. JFM 2016.

Statistical theory of surface gravity waves: A sketch of the derivation of the WKE

We look for an evolution equation for the wave action, averaging over initial data assumed to be *i.i.d. random variables*:

$$\begin{aligned} \frac{d\langle |b_1|^2 \rangle}{dt} &= \epsilon^2 2 \Im \mathfrak{m} \left[\sum_{2,3,4} T_{1234} \langle b_1^* b_2^* b_3 b_4 \rangle e^{i \Delta \omega_{12}^{34} t} \delta_{12}^{34} \right] \\ \frac{d\langle b_1^* b_2^* b_3 b_4 \rangle}{dt} &= \epsilon^2 F(\langle b_1^* b_2 b_3 b_4 b_5^* b_6^* \rangle, \langle b_1^* b_2^* b_3 b_4^* b_5 b_6 \rangle; t) \\ \frac{d\langle b_1^* b_2 b_3 b_4 b_5^* b_6^* \rangle}{dt} &= O(\epsilon^2) \end{aligned}$$

The end result (after taking the large box limit and sending $\epsilon
ightarrow 0$) is that

$$2\Im\mathfrak{m}\left[\sum_{2,3,4}T_{1234}\langle b_1^*b_2^*b_3b_4\rangle e^{i\Delta\omega_{12}^{34}t}\delta_{12}^{34}\right]\to\epsilon^2S_{nl}$$

The Kolmogorov-Zakharov solution of the WKE: direct energy cascade

$$\frac{\partial n(\mathbf{k}_1,t)}{\partial t} = \epsilon^4 \int_{-\infty}^{\infty} |T_{1234}|^2 n_1 n_2 n_3 n_4 \left(\frac{1}{n_1} + \frac{1}{n_2} - \frac{1}{n_3} - \frac{1}{n_4}\right) \delta(\Delta k) \delta(\Delta \omega) d\mathbf{k}_{2,3,4}$$

Constant flux solution

• Direct cascade of energy

$$n(\mathbf{k}) = CP^{1/3}k^{-4}$$

which, in terms of one dimensional energy spectral density function, corresponds to

$$E(k) \sim k^{-2.5}$$

or, using the dispersion relation, in frequency

$$E(\omega) \sim \omega^{-4}$$

Numerical verification of KZ solution

O. M., Osborne, A.R., Serio, M., Resio, D., Pushkarev, A., Zakharov, V.E. and Brandini, C. Freely decaying weak turbulence for sea surface gravity waves. Physical Review Letters, 2002

FIG. 2. Wave spectrum at t = 4 h. A $k^{-2.5}$ (dashed line) and a k^{-3} (dotted line) power law are also plotted.

イロト イポト イヨト イヨト

э

Numerical verification of KZ solution

VOLUME 92, NUMBER 13 PHYSICAL REVIEW LETTERS week 2 APR

week ending 2 APRIL 2004

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

A. I. Dyachenko,^{1,4} A. O. Korotkevich,^{1,4} and V. E. Zakharov^{1,2,3}
¹Landau Institute for Theoretical Physics, Z. Korygin Street, Moscow, 11934, Russian Federation ²University of Arizona, Tuccom, Arizona 85221, USA ³Waves and Solitons LLC, 738 W. Sereno Drive, Gilbert, Arizona 85233, USA (Received 26 August 2002; published 2 April 2004)

FIG. 2. Averaged spectrum of surface elevation $\langle |\eta_k|^2 \rangle$. Line $\sim k^{7/2}$ is also shown.

• O. Phillips in 1957 (JFM), based on a dimensional argument, proposed a frequency decay of the spectrum of the type:

$$E(\omega) \sim g^2 \omega^{-5}$$

- \bullet K. Hasselmann in 1973 performed experiments in the North Sea and parametrized the spectrum with a ω^{-5} tail
- These results were in disagreement with Zakharov theory

Experimental evidence of the ω^{-4} spectrum in the ocean

for Run no. 18 of Series A.

Taken from Kawai, S., Okada, K. and Toba, Y. Journal of the Oceanographical Society of Japan (1977)

Experimental results in the ocean: the ω^{-4} spectrum

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 13

On the Theory of the Equilibrium Range in the Spectrum of Wind-Generated Gravity Waves

S. A. KITAIGORODSKII

Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, MD 21218

(Manuscript received 23 November 1982, in final form 14 February 1983)

ABSTRACT

It is shown that an exact analog of Kolmogoroff's spectrum in a random field of weakly nonlinear surface gravity waves gives a spectral form for frequency spectra $S(\omega) \sim \omega^{-4}$ in close agreement with the results of recent observational studies. The proposed theory also indicates the existence of a "transitional" range of wavenumbers (frequencies) where the deviation from Kolmogoroff's equilibrium is due to gravitational instability (wave breaking). Because of this it is suggested that the equilibrium form for the spectrum of wind-generated waves has two asymptotic regimes: Kolmogoroff's and Phillips' type of equilibrium with a relatively rapid transition from the first to the second. The experimental data favor such an interpretation.

Experimental results in the ocean: the ω^{-4} spectrum

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 17

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

A Reanalysis of the Spectra Observed in JONSWAP

J. A. BATTJES, T. J. ZITMAN AND L. H. HOLTHUUSEN

Dept. of Civil Engineering, Delft University of Technology, Delft, The Netherlands

(Manuscript received 28 July 1986, in final form 4 March 1987)

ABSTRACT

The frequency spectra of wind-driven waves observed during JONSWAP are reanalyzed to establish whether the Toba formulation for the high-frequency tail $(\neg \uparrow)$ fits the data better than the Phillips formulation $(\neg f)$ used originally in the JONSWAP project. The results indicate that the f^{-4} tail provides a statistically better fit to the observed spectra. The proportionality factor in Toba's spectrum, which is theoretically expected to be a universal constant, is found to be uncorrelated with the growth stage of the waves. There is a relatively large scatter in the observed values, which can parily be ascribed to the influence of tidal currents.

Lab experiments related to direct energy cascade spectrum

Figure from: Falcon, E. and Mordant, N., Experiments in surface gravity-capillary wave turbulence. Annual Review of Fluid Mechanics (2022)

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The data from Acqua Alta Oceanographic Tower

Using two cameras mounted at 12.5 m above the mean sea surface pointing to the same area, it is possible to measure the surface elevation in space and time

 The data set are described in Guimarães, P. V., et al. "A data set of sea surface stereo images to resolve space-time wave fields. Sci. Data, 7, 145." (2020).

The data from Acqua Alta Oceanographic Tower

Spatial resolution: 0.2 m Temporal resolution: 1/12 s Total temporal length: 20000 frames (almost 28 minutes)

The frequency spectrum

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Wave number spectrum

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

The $(k-\omega)$ spectrum

・ロト・西ト・山田・山田・山口・

The normalized fourth-order correlator

$$\frac{|\langle \eta(\mathbf{k}_1,t)^*\eta(\mathbf{k}_2,t)^*\eta(\mathbf{k}_3,t)\eta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}_3,t)\rangle_t|}{\langle |\eta(\mathbf{k}_1,t)||\eta(\mathbf{k}_2,t)||\eta(\mathbf{k}_3,t)||\eta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}_3,t)|\rangle_t}$$

(ロト 4 個 ト 4 画 ト 4 画 ト 画 9 Q Q

Filtering in the $(k-\omega)$ spectrum

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二臣 - のへで

Normalized fourth-order correlator

$$\frac{|\langle \eta^*(\mathbf{k}_1,t)\eta^*(\mathbf{k}_2,t)\eta(\mathbf{k}_3,t)\eta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}_3,t)\rangle_t|}{\langle |\eta(\mathbf{k}_1,t)||\eta(\mathbf{k}_2,t)||\eta(\mathbf{k}_3,t)||\eta(\mathbf{k}_1+\mathbf{k}_2-\mathbf{k}_3,t)|\rangle_t}$$

 For the black line, the following resonant condition is satisfied

$$\mathbf{k}_1 = (0, 3.49), \quad \mathbf{k}_2 = (0, 3.49),$$

$$\mathbf{k}_3 = (k_{3,x}, 3.49), \quad \mathbf{k}_4 = (-k_{3,x}, 3.49)$$

$$\omega_1 - \omega_2 = \omega_3 - \omega_4$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Normalized fourth-order correlator

Normalized fourth-order correlator

Data from Black-Sea

Data from Yellow-Sea

