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THE (ONE-DIMENSIONAL) ANHARMONIC CHAIN

The -FPU system has equation of motion and Hamiltonianα

F ≃ − Δq(γ + αΔq + …)

m··qj = (qj+1 + qj−1 − 2qj) [γ + α(qj+1 − qj−1)], j = 1,…, N

H(p, q) = 1
2

N

∑
j=1

p2
j +

N

∑
j=1

V(qj+1 − qj) , with  V(r) = r2

2 + α
r3

3

 equal masses  connected by the same weakly nonlinear spring N m



NORMAL MODES OF THE -FPUT SYSTEMα

ϵ = α γ1/4/m3/4 ∑ ωk |ak(t0) |2 , V1,2,3 = − ω1ω2ω3 /[2 2 sign(k1k2k3)]

ak = Pk − iωkQk

2 ωk
, with ωk = 2 sin ( k

2 ) , k = 2π
N (− N

2 + 1,…, N
2 )

i
da1
dt

= ω1a1 + ϵ ∑
k2,k3

V1,2,3(a2a3δ1,2+3 + 2a*2 a3δ1,3−2 + a*2 a*3 δ1,−2−3)

Assuming periodic boundary 
conditions and using discrete 
Fourier transforms,

The system is Hamiltonian:  i
dak

dt
= δH

δa*k

Qk = 1
N

N

∑
j=0

qj e−ijk Pk = ·Qk

one obtains the wave-action variables (normal modes)



FERMI’S IDEA

Enrico Fermi was interested in modelling thermal properties and 
transport in solids: this was the minimal nonlinear model where 
to expect energy equipartition and thermalisation

i
da1
dt

= ω1a1 + ϵ ∑
k2,k3

V1,2,3(a2a3δ1,2+3 + 2a*2 a3δ1,3−2 + a*2 a*3 δ1,−2−3)
suppose 89 etipartition
N 4



THE LOS ALAMOS REPORT



THE LOS ALAMOS REPORT

[Benettin et al., J Stat Pays 2013]



THE WAVE INTERACTION/TURBULENCE APPROACH

Wave turbulence (WT) theory is a statistical mechanics approach to 
weakly dispersive wave systems (waves in optics, plasma, ocean, 
Bose-Einstein condensates)

[Nazarenko, Wave Turbulence, 2011]

The (large time) efficient energy transfer in the system occurs only 
via exact resonant n-wave interaction processes satisfying

k1 ± k2 ± …kn = 0
ω1 ± ω2 ± …ωn = 0 (resonant manifold)



ROUTE TO EQUIPARTITION IN -FPUT, α N = 2l , l ∈ ℕ

1) No exact 3-wave interactions

k1 ± k2 ± k3
N= 0

ω1 ± ω2 ± ω3 = 0

2) Canonical transformations , to remove the 3-wave 
interactions, then higher order interactions

ak → bk

3) 4-wave interactions are resonant, but quartets are disconnected

k1 + k2 − k3 − k4
N= 0

ω1 + ω2 − ω3 − ω4 = 0

ωk = 2 sin ( k
2 ) , k = 2π

N (− N
2 + 1,…, N

2 )
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ROUTE TO EQUIPARTITION IN -FPUT, α N = 2l , l ∈ ℕ

4) 6-wave interactions are resonant and all sextuplets are connected, 
hence thermalisation can happen!

k1 + k2 + k3 − k4 − k5 − k6
N= 0

ω1 + ω2 + ω3 − ω4 − ω5 − ω6 = 0

i
db1
dt

= ω1b1 + 4-waves + ϵ4 ∑ W1,2,3,4,5,6b*2 b*3 b4b5b6δ1+2+3,4+5+6

∂n(k1)
∂t

∼ ϵ8 ∑ . . . ⟹ teq ∼ 1/ϵ8

5) Estimation of the equipartition time-scale

ωk = 2 sin ( k
2 ) , k = 2π

N (− N
2 + 1,…, N
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ROUTE TO EQUIPARTITION IN -FPUT, α N = 2l , l ∈ ℕ

6) entropy evolution to estimate the equipartition timescale

s(t) = ∑
k

fk log fk; with fk = N − 1
Etot

ωk⟨ |ak |2 ⟩, Etot = ∑
k

ωk⟨ |ak |2 ⟩

∂n(k1)
∂t

∼ ϵ8 ∑ . . . ⟹ teq ∼ 1/ϵ8

[Onorato et al, PNAS 112, 4208-4213 (2015)]
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[Onorato et al, PNAS 112, 4208-4213 (2015)]

Quick summary on FPUT
‣ Equipartition of interacting systems, usually one-dimensional, 

might not be as trivial as one expects
‣ The WT framework is useful to predict the equipartition 

timescale in the weakly nonlinear regime
‣ In a discrete systems the resonant manifold is also discrete, and 

the existence of resonant modes is not enough to insure 
equipartition: all the modes need to be connected!



OPTICAL LOOP

‣ traditional optical fibre, signal measured at straight line
‣ localised wave-packet (sketched as a circle)
‣ assume no dissipative nor dispersive effects  
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OPTICAL TWO LOOPS, EQUAL LENGTH

‣ traditional optical fibre, signal measured at straight line
‣ localised wave-packet (sketched as a circle)
‣ assume no dissipative nor dispersive effects
‣ two loops connected via a 50/50 beam splitter: double loop 
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OPTICAL TWO LOOPS, DIFFERENT LENGTHS

‣ traditional optical fibre, signal measured at straight line
‣ localised wave-packet (sketched as a circle)
‣ assume no dissipative nor dispersive effects
‣ two loops connected via a 50/50 beam splitter
‣ the loops have (slightly) different lengths

a v
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3

T̄ = T1 + T2
2 and ΔT = |T1 − T2 |



THE MATHEMATICAL (LINEAR) MODEL
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THE MATHEMATICAL (LINEAR) MODEL

‣ The signals are complex, , with  being the 
spatial and time lattice indices, respectively

‣ The 50/50 beam splitter introduce an  phase in the 
reflected signal

‣ System equivalent to an (averaged) Galton board
‣ Signals on even (odd) spatial lattice points will come back to 

even (odd) spatial lattice points after two steps

(um
n , vm

n ) ∈ ℂ (n, m)

π/2

um+1
n = 1

2
(um

n+1 + ivm
n+1)

vm+1
n = 1

2
(ium

n−1 + vm
n−1)

[Experiments on pulse dynamics and parity-time symmetry in optical 
fiber networks, Alois Regensburger, PhD dissertation (2013)]
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TWO-STEPS DYNAMICS, BLOCH-FLOQUET ANSATZ

‣ Two steps in space and time, , , 
‣ With Bloch-Floquet ansatz

‣ Two opposite periodic branches

n′ = 2n m′ = 2m N′ = N/2

(ũm′ 
k

ṽm′ 
k ) =

N′ −1

∑
n′ =0 (um′ 

n′ 

vm′ 
n′ 

) e−ikn′ eiωm′ ⟹
ω±

k = ± arccos [ 1
2 cos (− k

2 ) − 1
2 ] + 2πl

with k = 2π
N′ (− N′ 

2 + 1,…, N′ 

2 ), l ∈ ℤ

um+1
n = 1

2
(um

n+1 + ivm
n+1)

vm+1
n = 1

2
(ium

n−1 + vm
n−1)

⟹
um+2

n = 1
2 (um

n+2 − um
n + ivm

n+2 + ivm
n )

vm+2
n = 1

2 (ium
n−2 + ium

n−2 − vm
n + vm

n−2)

(ãm′ ,+
k

ãm′ ,−
k ) = D (ũm′ 

k

ṽm′ 
k )

‣ Normal modes are not simply the , 
but requires a diagonalisation procedure

(ũm′ 

k , ṽm′ 

k )



THE MATHEMATICAL (LINEAR) MODEL

A more general (linear) system
‣ beam splitter with variable slitting ratio, parameter 
‣ Variable phase modulation in one of the loop, parameter 

θm

ϕm

[L.K. Upreti,et al, PRL 125, 186804 (2020)]

um+1
n = [cos(θm)um

n+1 + i sin(θm)vm
n+1] eiϕm

vm+1
n = i sin(θm)um

n−1 + cos(θm)vm
n−1

Assuming an alternating phase modulation
the dispersion relation results in

ω±
k = ± arccos [cos2(θ) cos (− k

2 ) − sin2(θ) cos2(ϕ)] + 2πl

with k = 2π
N′ (− N′ 

2 + 1,…, N′ 

2 ) and l ∈ ℤ

ϕm = {−ϕ for m even
ϕ for m odd

phasemodulation

TEE



ENGINEERING THE DISPERSION RELATION, N′ = 32

θ = π/4 , ϕ = π/4

-3 -2 -1 1 2 3
k

-3

-2

-1

1

2

3

ω

-3 -2 -1 1 2 3
k

-3

-2

-1

1

2

3

ω

θ = π/4 , ϕ = 0

-3 -2 -1 1 2 3
k

-3

-2

-1

1

2

3

ω

θ = π/3 , ϕ = 0

-3 -2 -1 1 2 3
k

-3

-2

-1

1

2

3

ω

θ = π/4 , ϕ = π



ADDING NONLINEAR INTERACTIONS

um+1
n = [cos(θm)um

n+1eiχ|um
n+1|

2 + i sin(θm)vm
n+1eiχ|vm

n+1|
2] eiϕm

vm+1
n = i sin(θm)um

n−1eiχ|um
n−1|

2 + cos(θm)vm
n−1eiχ|vm

n−1|
2

‣ take long loops / high powers so that nonlinear effects in the 
signal propagation need to be considered 

‣ while making a loop each signal acquires an extra phase 
rotation proportional to a nonlinear parameter  times its 
absolute value squared

χ

[Experiments on pulse dynamics and parity-time symmetry in optical 
fiber networks, Alois Regensburger, PhD dissertation (2013)]

defer
as
longerloops

ψ(t) = ψ(t0)ei|ψ(t0)|2(t−t0)

from NLS, assuming no 
dispersive effects:



‣ thermal states have been measured experimentally and 
explained using statistical mechanics principles

‣ we want to characterise the wave interaction processes and 
the route to thermalisation using the WT framework

‣ we choose  and θ = arccos ( 0.3) ϕ = π/8

WAVE INTERACTIONS AND ROUTE TO THERMALISATION
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THERMALISATION - HIGHER BRANCH

a single realisation average over 500 
realisations

‣ Lowest  energy modes of the upper 

branch,   and 

N′ /2 = 20
θ = arccos ( 0.3) ϕ = π/8 -2 -1 1 2 3
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ENTROPY EVOLUTION AND EQUIPARTITION TIMESCALE

sm = ∑
k

log
|am,+

k |2 + |am,−
k |2

P
, P = ∑

k
( |am,+

k |2 + |am,−
k |2 ) = const.

‣ Lowest  energy modes of the upper branch,  

 and 

N′ /2 = 20
θ = arccos ( 0.3) ϕ = π/8 -2 -1 1 2 3
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PRELIMINARY CONCLUSIONS

‣ Flexible system allowing to engineer the dispersion relation
‣ Thermalisation seems to be dominated by 4-wave process (see 

Tommy’s poster!)
‣  fit still missing! Not clear how both branches thermalise

Open questions
‣ Derivation of a discrete kinetic equation? Is the time discreteness 

playing an important role?
‣ Out-of-equilibrium steady states? Turbulence?

(T, μ)

um+1
n = [cos(θm)um

n+1eiχ|um
n+1|

2 + i sin(θm)vm
n+1eiχ|vm

n+1|
2] eiϕm

vm+1
n = i sin(θm)um

n−1eiχ|um
n−1|

2 + cos(θm)vm
n−1eiχ|vm

n−1|
2
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