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WAVE INTERACTIONS AND
TURBULENCE IN DISCRETE SYSTEMS

" Some results on discrete anharmonic chains (Fermi-

Pasta-Ulam-Tsingou system)
[Onorato et al, PNAS |12,4208-4213 (2015)]

" Introduction to optical mesh lattices
" Preliminary results on thermalisation

WORK IN PROGRESS!



THE (ONE-DIMENSIONAL) ANHARMONIC CHAIN

N equal masses m connected by the same weakly nonlinear spring
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The a-FPU system has equation of motion and Hamiltonian
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NORMAL MODES OF THE a-FPUT SYSTEM

Assuming periodic boundary
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FERMI'S IDEA

WWAAWW

Enrico Fermi was interested in modelling thermal properties and
transport in solids: this was the minimal nonlinear model where
to expect energy equipartition and thermalisation
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THE LOS ALAMOS REPORT
STUDIES OF NON LINEAR PROBLEMS

E, FErMI, J. PASTA, and S. ULAM
Document LA~1040 (May 1935).

A one-dimensional dynamical system of 64 particles with forces between neighbors
containing nonlinear terms has been siudied on the Los Alamos computer MANIAC 1. The
nonlinear terms considered are quadratic, cubic, and broken linear types. The resuits are
analyzed into Fourier components and plotted as a function of time.

The results show very little, if any, tendency toward equipartition of energy among
the degrees of freedom,
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THE LOS ALAMOS REPORT
STUDIES OF NON LINEAR PROBLEMS

E, FErMI, J. PASTA, and S. ULAM
Document LA~1940 (May 1935).

A one-dimensional dynamical system of 64 particles with forces between neighbors
containing nonlinear terms has been siudied on the Los Alamos computer MANIAC 1. The
nonlinear terms considered are quadratic, cubic, and broken linear types. The resuits are
analyzed into Fourier components and plotted as a fuaction of time.

The results show very little, if any, tendency toward equipartition of energy among

the degrees of freedom,
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THE WAVE INTERACTION/TURBULENCE APPROACH

Wave turbulence (WT) theory is a statistical mechanics approach to
weakly dispersive wave systems (waves in optics, plasma, ocean,

Bose-Einstein condensates)
[Nazarenko,Wave Turbulence, 201 1]

The (large time) efficient energy transfer in the system occurs only
via exact resonant n-wave interaction processes satisfying

(resonant manifold)




ROUTE TO EQUIPARTITION IN a-FPUT, N=2!, I e N

..............

|) No exact 3-wave interactions

ki thk,+ k20

2) Canonical transformations a, — b,, to remove the 3-wave
interactions, then higher order interactions

3) 4-wave interactions are resonant, but quartets are disconnected
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hence thermalisation can happen!
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ROUTE TO EQUIPARTITION IN a-FPUT, N=2!, I e N

6) entropy evolution to estimate the equipartition timescale
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[Onorato et al, PNAS |12, 4208-4213 (2015)]



Quick summary on FPUT

" Equipartition of interacting systems, usually one-dimensional,
might not be as trivial as one expects

" The WT framework is useful to predict the equipartition
timescale in the weakly nonlinear regime

" In a discrete systems the resonant manifold is also discrete, and
the existence of resonant modes is not enough to insure
equipartition: all the modes need to be connected!

> Some results on discrete anharmonic chains (Fermi-

Pasta-Ulam-Tsingou system)
[Onorato et al, PNAS 112,4208-4213 (2015)]

" Introduction to optical mesh lattices
" Preliminary results on thermalisation



OPTICAL LOOP

>

traditional optical fibre, signal measured at straight line
localised wave-packet (sketched as a circle)
assume no dissipative nor dispersive effects

>

>




OPTICAL TWO LOOPS, EQUAL LENGTH

traditional optical fibre, signal measured at straight line
localised wave-packet (sketched as a circle)

assume no dissipative nor dispersive effects

two loops connected via a 50/50 beam splitter: double loop
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OPTICAL TWO LOOPS, DIFFERENT LENGTHS

" traditional optical fibre, signal measured at straight line
" localised wave-packet (sketched as a circle)

" assume no dissipative nor dispersive effects

" two loops connected via a 50/50 beam splitter

" the loops have (slightly) different lengths
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THE MATHEMATICAL (LINEAR) MODEL
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THE MATHEMATICAL (LINEAR) MODEL
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" The signals are complex, (1", v)") € C, with (n, m) being the
spatial and time lattice indices, respectively 2 \

" The 50/50 beam splitter introduce an /2 phase in the U\
reflected signal o000 0o

" System equivalent to an (averaged) Galton board e ﬂ; o .W

" Signals on even (odd) spatial lattice points will come back to
even (odd) spatial lattice points after two steps

[Experiments on pulse dynamics and parity-time symmetry in optical
fiber networks, Alois Regensburger, PhD dissertation (2013)]



TWO-STEPS DYNAMICS, BLOCH-FLOQUET ANSATZ
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Two steps in space and time,n’ = 2n,m' = 2m,N' = N/2
" With Bloch-Floquet ansatz
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Two opposite periodic branches
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Normal modes are not simply the (it;", V"), ' i
but requires a diagonalisation procedure =D



THE MATHEMATICAL (LINEAR) MODEL

A more general (linear) system

>

beam splitter with variable slitting ratio, parameter 6"

>

Variable phase modulation in one of the loop, parameter ¢"

?\M\z wods \aX

V\

u"tl = [cos(@m)u + 1 sin(@™)v +1]

vt = i sin(@™u™ | + cos(@™Ww™

meR S

Assuming an alternating phase modulation ¢" =

{—gb for m even
¢ for m odd

the dispersion relation results in
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[L.K. Upreti,et al, PRL 125, 186804 (2020)]



ENGINEERING THE DISPERSION RELATION, N’ = 32
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ADDING NONLINEAR INTERACTIONS
?Vlﬁ\z Wtc&)w\&fb\l\)

i from NLS, assuming no
i  dispersive effects: |

(D) = iyl |
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>

take long loops / high powers so that nonlinear effects in the
signal propagation need to be considered

while making a loop each signal acquires an extra phase

rotation proportional to a nonlinear parameter y times its
absolute value squared
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[Experiments on pulse dynamics and parity-time symmetry in optical
fiber networks, Alois Regensburger, PhD dissertation (2013)]



WAVE INTERACTIONS AND ROUTE TO THERMALISATION

"~ thermal states have been measured experimentally and
explained using statistical mechanics principles

Marques Muniz et al., Science 379, 1019-1023 (2023)
THERMODYNAMICS

Observation of photon-photon thermodynamic
processes under negative optical
temperature conditions

A. L. Marques Muniz*%+, F. 0. Wut, P. S. Jung®*+, M. Khajavikhan®, D. N. Christodoulides®**, U. Peschel**

" we want to characterise the wave interaction processes and
the route to thermalisation using the WT framework

~ we choose ) = arccos (\/0.3) and @ = /8 e




THERMALISATION - HIGHER BRANCH

>

Lowest N'/2 = 20 energy modes of the upper

branch, 8 = arccos (\/OS) and ¢ = /8
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ENTROPY EVOLUTION AND EQUIPARTITION TIMESCALE

>

Lowest N'/2 = 20 energy modes of the upper branch,

@ = arccos (\/O.S) and ¢ = /8
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s = log B , P= |ak |© + |ak = const.
k k
Evolution of normalised Entropy S averaged over 500 realisation Estimation of thermalisation time versus nonlinearity
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PRELIMINARY CONCLUSIONS
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" Flexible system allowing to engineer the dispersion relation
" Thermalisation seems to be dominated by 4-wave process (see

Tommy’s poster!)
" (T, p) fit still missing! Not clear how both branches thermalise

Open questions
" Derivation of a discrete kinetic equation? Is the time discreteness

playing an important role!?
" Out-of-equilibrium steady states? Turbulence!?
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