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Outline

 Some history and perspective

* For Euler equations the existence of singularities may depend on initial
conditions, the geometry, etc.

* Finite time singularities in other PDEs.

* Evidence of a self-similar pointlike singularity of solutions of Euler equations.

e Discussion.



The Euler equations v +(v-V)V=— ! Vp

Euler 1757 (2nd PDE written in history, ot P
excellent description of perfect fluids) V.v=(

Symmetries: translation, rotations, scaling, galilean invariance.

Conserved quantities: If the velocity field is differentiable, then the Energy

L = 5 |V \2d3x < o0, the Circulation (Kelvin theorem), the Helicity, the Linear
Momentum, the mean vorticity are conserved by the flow.

Taxonomy: Euler (as well as Navier-Stokes) equations are hard because are a
nonlinear and non-local PDE (Same for vorticity equation).

Timely: Recent attention to the Regularity problem: Does a smooth initial

condition remain differentiable for all time ?



e L. Lichentenstein (1925); N. Gunther (1927); J. Leray (1934).

The search of singularities In fluid motion

« Onsager Conjecture (1949): The velocity field does not remain differentiable: | v(r’' — r) — v(r’) \3 ~ €T.

* A geometric approach: vortex sheets (Moore, 1979), vortex filaments (Siggia, 1985) [No intrinsic length].

 Numerical simulations: S. Orszag et al (1980-1982), Grauer & Sideris (1991), Pumir & Sigma (1992), Kerr (1993),... Gibbons (2007)

summarizes: 9 Yes & 7 No.

 Luo & Hou (PNAS 2014) & Barkley (2020). Numerical evidence of a blow-up in axisymmetric Euler equation with a solid boundary.

 Theory: Pomeau (1995-2018), tried different scaling for Leray’s self similar solutions.

Math. point of view: Th. Beale, Kato, Majda (1984): There exists regular solutions of 3D Rule if

Sverak (1996) no Leray self-similar solution for Navier Stokes, Chae (2010).

T
|(?) | . < 0. Necas, Ruzicka &

0

* Elgindi (Nov 2021) finds a finite-time singular solution of the axisymmetric Euler equations without swirl, but for a singular initial

condition.

* Evidence of anisotropic finite-time singularity. (S. Rica, 2022)

* Physics Informed neural networks approach (Y. Wang, C-Y Lai, J.Gomez-Serrano, T. Buckmaster, PRL 2023).

 Chen & Hou (arxiv Oct2022) Proof of a blow-up in axisymmetric Euler equation with a solid boundary.



Geometry of the singularity: a rim-like singularity
S. Rica, “Potential anisotropic singularity ...” PHYSICAL REVIEW FLUIDS 7, 034401 (2022)
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Geometry of the singularity: a point-like singularity
S. Rica, “Potential anisotropic singularity ...” PHYSICAL REVIEW FLUIDS 7, 034401 (2022)
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Discussion: The existence of singularities

 may depend on the initial condition. Singularity arises on a

+ may depend on the boundary circular rim at the boundary

conditions [Luo & Hou, PNAS, 111
(2014).]

e Luo & Hou observed a self similar
singularity. i
ul()“é,t)~[ts—t]7uU([ L ),

ts —t]"

 For the following we look for self
similar singular solutions.




Pointlike singular solution
Elgindi (2021)

vy(X,¥,2,8) =0  Zero swirl velocity.

2a ((x* +y?) Z)OC/3

C*(a) ((t>X< _ t) 4 (XZ 4 y2 4 ZZ)O{/Z)

a)¢(x9 ya Za t) — o)

NB. It is a family of solutions: 0 < a < 1. The transport
term acting on oy is negligible for ¢ << 1. But the initial
condition is not smooth!!!

y =

Singular point

xz+y2




Self-similar singularities

Explosion (Taylor - Sedov): R(f) ~ (
* P

PIStKInd ey v (IR

Pinch-off of a Droplet (Eggers, Brenner,

/5 - - |
E I
|

p ~ rHE2P (rIR(?)) ’

Lister, Stone ~1995)

(t —t)_mV x/(t —t)l/2 h ~ (t —t)H x/(t —t)”2

Implosmn (Sedov R(t) ~ ( t)“

.+ 2nd kind:| v~ r/tV(r/R®)) p~rlt*P(r/IR®)), a=0.7
| 1 "
| NLS focusing (Sulem et al) h(r,t) = P & (m —, — log(tc - t))
o 1 |
o (@) = =SV — [T 86 T) = e Tp(6)

A € R is “nonlinear eigenvalue”|
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The Euler equation for the velocity and the vorticity

Define

0V |
— 4+ (V- V)v=——Vp
0t I,

W=V XV,

00
—+ VX (wXv)=0.
ot

V.-v=0




Self-similar singularities (eray-romeau et a)

1
atV-I-(V'V)V:——Vp V.-v=(

(1=0)V4u (& V) V+(V-V)V==VP
V. V=0

v € R is “nonlinear eigenvalue”



Self-similar singularity for vorticity

U € R is the same “nonlinear
eigenvalue”



Axisymmetric Euler equations In cylindrical coordinates
V() = V5§+ V¢g5 + ng a 3D field
é’ A

NB. 3 equations for 3 fields

o0

1
§
O UV, =0

1 1
Qg + v (§0: + CO¢) Qg + c (0 WOy — O WOy ) + e

1 1
(1 =v)Vy + v (£0: + (O ) Vo + c (O WOV — O WO V) — e
1(82\11 10U 82\11)
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O U0y = —=0 V7

= —Q,.

Q(E0) = Vy(£0) = PED) =0 E



Scheme of solution in steps

1. Expanding, £2,(¢, 0) and Vé(f, @)) in spherical hamonics using Legendre

polynomials that satisfies the boundary conditionsat 6 =0 & 60 = #n/2.

. 2 2 2
2. To solve the stream function eq: ﬂ+i(ﬂ_cmeﬂ> — _E6in0Q,(E0) .
AN Y v

3. To derive an infinite autonomous set of ode’s for the amplitudes of each field,

Q) Vg% and ¥ . For instance W(¢&, 0) = &° i (Nn(f) + Ln(f)) y,(0).

n=1
4. To close, the hierarchy and transform the problem into a 4/V.. dimensional

Dynamical System.

5.10 solve the dynamical system by using a “shooting”-like method that
determines shooting parameters, eg. the exponent v.

6. To test the convergence.



Dynamical system approach

Finite (4N.) dynamical system
4N.. ODEs Heteroclinic trajectory among two fixed points.

The solutions are labeled by o

that governs the inner behavior. G, ~e” ,F ~e™,
Smooth solutions require 6 = 1,2, 3... Ny~ €™, Ly~ e® , L — LO ~ ¢

Q,(&,0) ~ &7 for & — 0

S > — OO0

Selection problem:
Fn:Gn:anLn>1:O’&L1:L1(O) P

v &LO

Stable fixed point
F =G =N,=L =0




Numerical sketch: multi-parameter “shooting” method
Differential evolution (R. Storn and K. Price, Journal of Global Optimization 11, 341, 1997)

Solutions for N: =2 and ¢ = 2

v = 1.15231, L1<0> — 0.46587. Q,(,0) ~&° for & — 0



Numerical solutions for the truncated dynamical system

The solutions for different N* 0) A
Ll — I —Ll(S)

We use L,(s) for comparing different ‘
orders of truncation. Note that the '
horizontal axis is free thus one needs It
to fit a common origin. More relevant ’
are the oscillations, probably due to _
the existence of oscillatory modes. 0.4l

Other amplitudes are less convergent. AN (s)




Numerical solutions for the truncated dynamical system

Removing the oscillations and setting a common origin for L,(s).




Numerical solutions for the truncated dynamical system
The solutions for different NV

N*|o||# Nodes| vn+ |S(vn+)|
2 |2 0 1.15231 -

3 |2 - : -

4 |2 1 2.03805 -

D |2 17 1.91086|1.76923
6 |2 12 1.84385(1.90431
7 |2 14 2.46257| 2.1625
8 |2 29 1.87994(2.13078
9 |2 44 2.32043|2.10764
10 |2 44 1.90880(2.04785
11 |2 44 2.11878(2.01946
12 |2 ol 1.9303 |2.02344
13 |2 27 2.114422.03276
14 |2 03 1.96769|2.03814
15 |2 03 2.103212.04262
16 |2 69 1.99363| 2.0357
17 |2 94 2.06191|2.02777
18 |2 128 12.02397|2.03353
19 |2 98 2.08961 -
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Summary

 The axisymmetric Euler equations are decomposed by a series expansion in a
Legendre basis.

* The assumption of finite-time singularity maps the original nonlocal Euler equations
into an infinite set of ordinary differential equations with a self-similar exponent as a
nonlinear eigenvalue.

» The self similar exponent appears to converge to v &~ 2 . However, the problem needs
a better closure.

 The value v = 2, indicates v(X,7) = g(t.— 1)V (X/ (g(z. — t)z)) with ¢ a quantity

with dimensions of an acceleration, namely g ~ Fg/Eé3 . Thus if initially helicity is zero
the singularity may be avoided.

* The effect of dissipation and regularity problem of Navier-Stokes equations.



