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Outline

• Some history and perspective 


• For Euler equations the existence of singularities may depend on initial 
conditions, the geometry, etc.


• Finite time singularities in other PDEs.


• Evidence of a self-similar pointlike singularity of solutions of Euler equations.


• Discussion.



Euler 1757 (2nd PDE written in history, 
excellent description of perfect fluids)

∂v
∂t

+ (v ⋅ ∇)v = −
1
ρ

∇p

∇ ⋅ v = 0
• Symmetries: translation, rotations, scaling, galilean invariance.


• Conserved quantities: If the velocity field is differentiable, then the Energy 

 , the Circulation (Kelvin theorem), the Helicity, the Linear 
Momentum, the mean vorticity are conserved by the flow.


• Taxonomy: Euler (as well as Navier-Stokes) equations are hard because are a 
nonlinear and non-local PDE  (Same for vorticity equation).


• Timely: Recent attention to the Regularity problem: Does a smooth initial 
condition remain differentiable for all time ?

E =
1
2 ∫ |v |2 d3x < ∞

The Euler equations



The search of singularities in fluid motion
• L. Lichentenstein (1925); N. Gunther (1927); J. Leray (1934). 


• Onsager Conjecture (1949): The velocity field does not remain differentiable: .


• A geometric approach: vortex sheets (Moore, 1979), vortex filaments (Siggia, 1985) [No intrinsic length].


• Numerical simulations: S. Orszag et al (1980-1982), Grauer & Sideris (1991), Pumir & Sigma (1992), Kerr (1993),…  Gibbons (2007) 
summarizes:  9 Yes  &  7 No.


• Luo & Hou (PNAS 2014) & Barkley (2020). Numerical evidence of a blow-up in axisymmetric Euler equation with a solid boundary.


• Theory: Pomeau (1995-2018), tried different scaling for Leray’s self similar solutions.


• Math. point of view: Th. Beale, Kato, Majda (1984): There exists regular solutions of 3D Rule if  . Necas, Ruzicka & 

Sverak (1996) no Leray self-similar solution for Navier Stokes, Chae (2010).


• Elgindi (Nov 2021) finds a finite-time singular solution of the axisymmetric Euler equations without swirl, but for a singular initial 
condition. 


• Evidence of anisotropic finite-time singularity. (S. Rica, 2022) 


• Physics Informed neural networks approach (Y. Wang, C-Y Lai, J.Gómez-Serrano, T. Buckmaster, PRL 2023).


• Chen & Hou (arxiv Oct2022) Proof of a blow-up in axisymmetric Euler equation with a solid boundary.

|v(r′￼− r) − v(r′￼) |3 ∼ ϵr

∫
T

0
|ω(t) |∞ < ∞



Geometry of the singularity: a rim-like singularity

r

S. Rica,“Potential anisotropic singularity …” PHYSICAL REVIEW FLUIDS 7, 034401 (2022)

Assuming  and using the Riemann’s characteristic method one observes two possible types of 

singularities depending on the initial condition.

∂ ⋅
∂z

≫
∂ ⋅
∂r

∂vϕ

∂r
∼

1
(tc − t)

∂vr

∂r
∼

1
(tc − t)

,

vr(r, t = 0)

vr(r, t = tc) = vc



Geometry of the singularity: a point-like singularity

Axisymmetric flow
r

S. Rica,“Potential anisotropic singularity …” PHYSICAL REVIEW FLUIDS 7, 034401 (2022)

Assuming   
∂ ⋅
∂z

≫
∂ ⋅
∂r

vr(r, t = 0)

vr(r = 0, t = tc) → ∞

r

z



Discussion: The existence of singularities

• may depend on the initial condition.


• may depend on the boundary 
conditions [Luo & Hou, PNAS, 111 
(2014).]


• Luo & Hou observed a self similar 
singularity.


•   For the following we look for self 
similar singular solutions.

Singularity arises on a 

circular rim at the boundary



Pointlike singular solution
Elgindi (2021)

ωϕ(x, y, z, t) =
2α

c*(α)
((x2 + y2) z)α/3

((t* − t) + (x2 + y2 + z2)α/2)2
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0
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r = x2 + y2

z

vϕ(x, y, z, t) = 0

NB. It is a family of solutions: . The transport 
term acting on  is negligible for  But the initial 
condition is not smooth!!!

0 < α < 1
ωϕ α ≪ 1.

Zero swirl velocity.

ωϕ(r, z) = Cte

Singular point



Self-similar singularities 

• 1st kind 


• 2nd kind:    

Implosion (Sedov) 
R(t) ∼ (−t)α

v ∼ r/tV (r/R(t)) p ∼ r2/t2P (r/R(t)), α ≈ 0.7

NLS focusing (Sulem et al)

 is “nonlinear eigenvalue”λ ∈ ℝ

Explosion (Taylor - Sedov): 


  

R(t) ∼ ( E
ρ )

1/5

t2/5

v ∼ r/tV (r/R(t)) p ∼ r2/t2P (r/R(t))
Pinch-off of a Droplet (Eggers, Brenner, Lister, Stone ~1995) 


v ∼ (tc − t)−1/2 V (x/(tc − t)1/2) h ∼ (tc − t) H (x/(tc − t)1/2)
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∂v
∂t

+ (v ⋅ ∇)v = −
1
ρ

∇p

∇ ⋅ v = 0

The Euler equation for the velocity and the vorticity 

ω = ∇ × v,

Define

∂ω
∂t

+ (v ⋅ ∇)ω = (v ⋅ ∇)v

∂ω
∂t

+ ∇ × (ω × v) = 0.



Self-similar singularities 

 is “nonlinear eigenvalue”ν ∈ ℝ

(Leray-Pomeau et al) 

∂tv + (v ⋅ ∇)v = −
1
ρ

∇p ∇ ⋅ v = 0

v(r, t) =
1

(tc − t)1−ν
V ( r

(tc − t)ν
, − log(tc − t))

(1 − ν) V + ν (ξ ⋅ ∇ξ) V + (V ⋅ ∇ξ) V = − ∇P

p(r, t) =
ρ

(tc − t)2(1−ν)
P ( r

(tc − t)ν )

∇ξ ⋅ V = 0

v(r, t) =
1

(tc − t)1−ν
V ( r

(tc − t)ν )



Self-similar singularity for vorticity

 is the same “nonlinear 
eigenvalue”
ν ∈ ℝ

v(r, t) =
1

(tc − t)1−ν
V ( r

(tc − t)ν
, − log(tc − t))

Ω + ν ξ ⋅ ∇ξΩ + ∇ξ × (Ω × V) = 0

∇ξ ⋅ V = 0

ω(r, t) =
1

(tc − t)
Ω ( r

(tc − t)ν )

Ω = ∇ξ × V



a 3D fieldV(ξ, ζ) = Vξ
̂ξ + Vϕ

̂ϕ + Vζ
̂ζ

NB. 3 equations for 3 fields

Axisymmetric Euler equations in cylindrical coordinates

ϕ
ξy

ξx

ζ

ξ

ξ

ζ

Ω
ϕ(

0,
ζ)

=
V ϕ

(0
,ζ

)=
Ψ

(0
,ζ

)=
0

Ωϕ(ξ,0) = Vϕ(ξ,0) = Ψ(ξ,0) = 0

∞

∞



Scheme of solution in steps

z

1. Expanding,  and  in spherical hamonics using Legendre 
polynomials that satisfies the boundary conditions at    

Ωϕ(ξ, θ) V2
ϕ(ξ, θ)

θ = 0 & θ = π/2.

2. To solve the stream function eq:  .
∂2Ψ
∂ξ2

+
1
ξ2 ( ∂2Ψ

∂θ2
− cot θ

∂2Ψ
∂θ ) = − ξ sin θ Ωφ(ξ, θ)

3. To derive an infinite autonomous set of ode’s for the amplitudes of each field, 

,  and  . For instance .Ωϕ V2
ϕ Ψ Ψ(ξ, θ) = ξ3

∞

∑
n=1

(Nn(ξ) + Ln(ξ)) yn(θ)

5.To solve the dynamical system by using a “shooting”-like method that 
determines shooting parameters, eg. the exponent .ν
6. To test the convergence.

4. To close, the hierarchy and transform the problem into a  dimensional 
Dynamical System.

4N*



Stable fixed point

Heteroclinic trajectory among two fixed points.

Fn = Gn = Nn = Ln>1 = 0, & L1 = L(0)
1

 ODEs4N*

Finite  dynamical system(4N*)
Dynamical system approach 

Fn

L1

Gn

L(0)
1

x

x
Fn = Gn = Nn = Ln = 0

ν & L(0)
1

Selection problem:

The solutions are labeled  by  

that governs the inner behavior.

Smooth solutions require 


σ

σ = 1, 2, 3…
Gn ∼ eσs , Fn ∼ eσs ,

Nn ∼ eσs , Ln>1 ∼ eσs , L1 − L(0)
1 ∼ eσs

s → − ∞Ωϕ(ξ, θ) ∼ ξσ for ξ → 0



Differential evolution (R. Storn and K. Price, Journal of Global Optimization 11, 341, 1997)
Numerical sketch: multi-parameter “shooting” method

ν = 1.15231, L(0)
1 = 0.46587.

Gn

(a) (b)

Ωϕ(ξ, θ)

Vϕ(ξ, θ)

Ψ(ξ, θ)

Ωϕ(ξ, θ) ∼ ξσ for ξ → 0

Solutions for N* = 2 and σ = 2



The solutions for different N*
Numerical solutions for the truncated dynamical system

We use  for comparing different 
orders of truncation. Note that the 
horizontal axis is free thus one needs 
to fit a common origin. More relevant 
are the oscillations, probably due to 
the existence of oscillatory modes. 
Other amplitudes are less convergent. 

L1(s)



Removing the oscillations and setting a common origin for  .L1(s)

Numerical solutions for the truncated dynamical system

(a) (b)



Numerical solutions for the truncated dynamical system
The solutions for different N

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

ν ≈ 2.03



Summary
• The axisymmetric Euler equations are decomposed by a series expansion in a 

Legendre basis.


• The assumption of finite-time singularity maps the original nonlocal Euler equations 
into an infinite set of ordinary differential equations with  a self-similar exponent as a 
nonlinear eigenvalue.  


• The self similar exponent appears to converge to  .  However, the problem needs 
a better closure.


• The value , indicates   with  a quantity 
with dimensions of an acceleration, namely    . Thus if initially helicity is zero 
the singularity may be avoided.


• The effect of dissipation and regularity problem of Navier-Stokes equations.

ν ≈ 2

ν = 2 v(x, t) = g(tc − t) V (x/(g(tc − t)2)) g
g ∼ Γ8/E3

0


