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Wave turbulence is sometimes weak; if the wind isn't too
strong.

But even if there is a range of scales in which it is weak, it
(almost) always becomes strong, either at short or long scales.
What happens there?

[Newell Zakharov, '08]— dominated by cusp like objects (white
caps). Generalized Phillips spectrum.

So an option is to go from KZ ny ~ k=7 at small k to k=7 at
large k.
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Goal

» Construct models in which can study turbulence at strong
nonlinearity. Observe transition from one scaling exponent to
another as go from weak to strong nonlinearity

Strong

Phillips

» Perturbatively [V.R. Smolkin, "22]
e = k= (1 ST 4 )

Need to sum an infinite number of terms to get to strong
nonlinearity.
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Part I: Strongly local, large N theories

[V.R, Schubring, '24]
Two simplifying features.

1) A large number of fields [t Hooft, '74] [Berges et al.]

Instead of one field, there are N fields a{,, i=1,...,N, grouped
into a vector ap.

o o 1 ko N ox o
H = pr pdp + N Z Apipapspa(3p,dps ) (35,73, ) -
P P1ye-,P4
A is held finite, and can be small or large. N is taken to be very

large, N > 1.

O(N) spins, N =2
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2) A strongly local interaction

[Dyachenko, Newell, Pushkarev, Zakharov, '92]; [Grebenev, Medvedev, Nazarenko, Semisalov, '20]

Apipapsps Strongly peaked around momenta that are nearly equal
P1 R P2 A P3 A Pa.
Standard kinetic equation

ong 1 1 1 1
E - 4”2 Okpy +Okp, —Okpy — 5kp4)| p1p2p3p4|2 ’1_[1”1( ) 7_7_,774)5(‘*’12;34)
becomes a differential equation

uan N2 82 2B+3d+2 4 82
ot~ a2 (w " owin)

o
wk ~ k%, Nppapape ~ P



Summing the geometric series of bubble diagrams gives the kinetic
equation,

28+43d a2
i—aOn 1 0% [ Nw e +2n480—21
w o — w= n

ot N ow? 2

d+8 -
‘1— cAw a 90
(V9]

Stationary solutions:

2 2
Azg}il = (P—Qw)w_wctw <n_2 - c)wuaal) .
Own

Ow? n
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Three asymptotic solutions

1) Kolmogorov-Zakharov: drop term proportional to A:

2,242 4 0? 1 P = pe \2/3pl/3—d-28
w2 n ’

2) Strong turbulence: drop the n=2 term,

2
0% 1 3d+28 8 0 1 Cd—
28 2, TTa |cwa —— , = n~ c?Pk=92
w

3) Phillips (Critical Balance): drop left side (large A with
n~1/X)

n?— c)\ou%il =0, = n~ L @rs-a)

own cA
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Flowing between solutions

Strength of nonlinearity:

A nk 8
€k = Dhkkk Tk gBrd—r—a | p5oa
Wk

If 8> 3a: KZ at small k. At large k: strong turbulence or Phillips.

\Phimps
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Comments

Presented a model with a kinetic equation valid for both weak
and strong interactions

At strong nonlinearity, find a generalized Phillips spectrum
(critical balance) and a new strong wave turbulence spectrum.
Both of these can be obtained by “dimensional analysis”

The challenge, however, is to have a consistent dynamical
theory that achieves these scalings. That's what our kinetic
equation does.
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Future

» Study time-dependent solution of our kinetic equation

» Study large N with realistic interaction. The strongly local
interaction prevents any potential divergences, which can be
physically relevant talk by Falkovich.

» How to understand the strong turbulence scaling? What
quantity to compute?
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Part II: The € expansion

V.R, M. Smolkin, in progress; [Gurarie, '95]

The previous discussion was a case in which we went to strong
nonlinearity; the exponent changed by an order 1 amount.

Now: stay at weak nonlinearity, and get scale invariance (KZ
scaling) at small/large scales and scale invariant at large/small
scale with an exponent that differs by a small amount.

Wilson-Fisher '72: Describes water-vapor phase transition (a scale
invariant state), by working in 4 — € dimensions.
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. 8
Strength of nonlinearity: e, ~ Ak3 ™.

o
wk ~ k%, )‘P1P2P3P4 ~ pﬁ-

8 = 3« is special. If nonlinearity small at one scale, small at all
scales.

We will take
B=3a(l-¢), ex1

Nonlinearity grows slowly.

Is there a physical case when this is true? (or § ~ 2q, for inverse
cascade)
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We will work at small nonlinearity (\) and small e.
A class of diagrams dominates, which we sum.

Result, for A123a = Ao(p1p2pspa)®/4,

dm 1 1
E = 167 2245 Wp1 py; P3P4 >‘1234 Il_Il n; (nl n*—*—*)

where
Xo(p1p2p3pa)?/t

1+/\0T

A23a(p) =

At small scales, recover KZ. At large scales, effective 3 that is

B + €. Therefore,

2 2
ng ~ k—9738-3¢
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To clarify: normally, KZ is valid as long as € ~ AkT =

One expects the corrections to scale as powers of e,
nk:k_'y(l—&—#ek—l—...)

But, for small ¢, there is an additional small parameter, and the
expansion is

nk=k T(1+#Lk+...), Lr~exfe

We work at small €. KZ is for small Ly, and new scaling is at
large L.

is small.
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For a general coupling, we believe the answer is the same for
the exponent

The exception is if there is an IR divergence in the loop
integral

The exponent in the IR can be found by dimensional analysis.
Nontrivial thing is when actually get it. (In above example,
need positive \g; defocusing).

For a general coupling, form of coupling changes as flow from
small scales to large scales. E.g.

D13 P2-Pa — PLXP3 PaXpa+ -
What other quantities can we compute that are richer than
just nk? (e.g. four-point correlator will be sensitive to form of
A1234; not just scaling)
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