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Gross-Pitaevskii Equation (AKA: Nonlinear Schrödinger Equation)

g =
4�a~2
m

iℏ
∂ψ(r, t)

∂t
= −

ℏ2

2m
∇2ψ(r, t) + U(r) ψ(r, t) +g |ψ(r, t) |2 ψ(r, t)
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Figure 2 | Condensation results as a function of decreasing kinetic energy (increasing correlation length). a–e, Real-space (top row) and k-space
(bottom row) intensity pictures for initial wave kinetic energies E/N of 13.3 (a), 10.4 (b), 7.1 (c), 4.6 (d) and 1.8m�1 (e). The nonlinear interaction strength
is fixed by maintaining a constant applied voltage bias of �500 V.
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Figure 3 |Approach to equilibrium and condensation. Shown are results for fixed interaction strength, obtained by maintaining a constant voltage of
�500 V across the crystal. a,b, Chemical potential (a) and condensate fraction (b) versus energy per particle E/N. Dots are experimental values, obtained
from an average over 10 runs, while solid lines are theoretical fits. Error bars show variance. The red line in b corresponds to the limit µ ! µc = k2

0/(2kL),
in which the fundamental Bessel mode k0 becomes macroscopically populated. The blue line takes into account finite-size effects, µ 6= µc (see
Supplementary Information). c,d, Spectral profiles of random-phase input (black line) and equilibrium output (red, blue lines) from numerical simulation
(c) and experimental measurements (d). The green line in c is a reference k�2 spectrum predicted from Rayleigh–Jeans theory. Inset in d is a least-squares
fit of the experiment.

inhibits a direct measurement of this. Indeed, all nonlinear
propagation experiments are limited by the finite extent of
their media. To get around this, we introduce a novel feedback
mechanism which takes advantage of the digital nature of our
input/output devices (Fig. 1): the output field is recorded in the
CCD (charge-coupled device) cameras and then used as the input
field of the SLMs. This field recycling creates an effectively infinite
crystal, subject to discretization errors, band-pass filtering, and
bit-depth limitations. After a second pass through the crystal, the
peak of the condensate remains within 10% of the single-pass value
(with a correlation coefficient of 0.95 between the two spectral
profiles). These results, in combination with longer-propagation

simulations (Fig. 3c), confirm that the optical field has reached a
(quasi-) equilibrium state.

The feedback method enables a scenario not possible in classical
gas dynamics: selective and controlled adjustment of each particle’s
momentum. To show reversibility, we change the sign of all the
particle velocities; in the wave case, this is achieved by phase con-
jugation. As shown in Fig. 5b, the SLM can act as an ideal ‘Maxwell
demon,’28 reversing the flow of condensation and recovering the
initial ‘thermal’ cloud (with a correlation coefficient of 0.88). This
experimentally proves that although the ensemble dynamics de-
scribed by equation (1) always evolves towards maximum entropy,
the individual wave collisions are formally reversible (conservative);

472 NATURE PHYSICS | VOL 8 | JUNE 2012 | www.nature.com/naturephysics
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inhibits a direct measurement of this. Indeed, all nonlinear
propagation experiments are limited by the finite extent of
their media. To get around this, we introduce a novel feedback
mechanism which takes advantage of the digital nature of our
input/output devices (Fig. 1): the output field is recorded in the
CCD (charge-coupled device) cameras and then used as the input
field of the SLMs. This field recycling creates an effectively infinite
crystal, subject to discretization errors, band-pass filtering, and
bit-depth limitations. After a second pass through the crystal, the
peak of the condensate remains within 10% of the single-pass value
(with a correlation coefficient of 0.95 between the two spectral
profiles). These results, in combination with longer-propagation

simulations (Fig. 3c), confirm that the optical field has reached a
(quasi-) equilibrium state.

The feedback method enables a scenario not possible in classical
gas dynamics: selective and controlled adjustment of each particle’s
momentum. To show reversibility, we change the sign of all the
particle velocities; in the wave case, this is achieved by phase con-
jugation. As shown in Fig. 5b, the SLM can act as an ideal ‘Maxwell
demon,’28 reversing the flow of condensation and recovering the
initial ‘thermal’ cloud (with a correlation coefficient of 0.88). This
experimentally proves that although the ensemble dynamics de-
scribed by equation (1) always evolves towards maximum entropy,
the individual wave collisions are formally reversible (conservative);
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Classical light “condensates”

recent work [19], it has been reported that vortex recon-
nections in the Navier-Stokes equation also display a clear
t1=2 scaling, a coefficient A− ∼ 0.3–0.4 and the same time
asymmetry Aþ > A−. Note that the Biot-Savart (BS)
analytical calculations of Ref. [20] and the local induction
approximation based ones of Ref. [21] predict A− ∼ 0.47
and A− ¼ 0.427, respectively, which are in agreement with
our GP measurements. In what follows, we quantitatively
relate the asymmetry in the distribution of the prefactors
with the irreversible energy transfer between the vortex-
type and density or phase excitation families occurring
during a reconnection event. Previous numerical studies of
the GP model have indeed reported the clear emission of a
sound pulse during reconnection events [22,23]. A series of
snapshots showing the sound pulse emitted during the
decay of the Hopf link in one of our realizations is reported
in Ref. [24].
The simple linear theory neglecting the nonlinear term of

the GP model [14,15], valid in the limit δ# → 0, provides
insight into the dynamics of reconnecting parameters as the
order parameter can be found analytically. It predicts that
the filaments reconnect tangent to a plane, in our reference
frame the z ¼ 0, see Fig. 1(a), and that the projections of
the filaments onto it approach and separate following
the branches of a hyperbola. The macroscopic (post)
reconnection angle, formed by the hyperbola asymptotes,
results in

ϕþ ¼ 2arccotðArÞ; where Ar ¼ Aþ=A−: ð3Þ

the projections of the filaments onto the orthogonal plane
y ¼ 0 form a parabola (not shown in here; see Ref. [24] for
more details). Without any loss of generality, we set Λ=ζ
the concavity of such a parabola, and we refer to Λ as the
concavity parameter, where ζ is an arbitrary length scale,
whose value is not important in the following discussion.
In all the reconnection events detected, we observe a

distinct sound pulse generated after the reconnection
and propagating toward the positive z axis, as shown in
Figs. 3(a) and 3(b). Figure 3(c) shows the behavior of the
superfluid density along the z direction versus times t − tr.
A (depression) sound pulse is generated soon after the
reconnection and propagates toward the positive z direction
at a speed qualitatively close to the speed of sound in the
bulk; refer to the green dashed line z ¼ cðt − trÞ, with c
defined in Eq. (1). Note that the other low density regions,
corresponding to the density depletions of the vortex cores,
move much slower.
To explain the generation and directionality of such a

pulse, we devise a novel theoretical approach, detailed in
Ref. [24], and summarize in the following. Let us denote
by R#

1 ðs; tÞ and R#
2 ðs; tÞ the reconnecting filaments, with

s being their spatial parametrization variable. Far from
the reconnection point (both before and after), the
dynamics of the vortex filaments are mostly driven by

the Biot-Savart model, which describes the motion of
δ-supported vorticity in an incompressible inviscid
flow [25]; note that this limit can be formally derived
from GP [26]. In our realizations, BS is valid at distances
δ#ðtÞ ≫ δlin, whereas for δ#ðtÞ ≪ δlin the dynamics is
determined by the linear approximation, given δlin is a
crossover scale of order of the healing length. We assume
both descriptions approximately valid when the filaments
are at the distance δ#ðt#Þ ≈ δlin. This hypothesis, vali-
dated by previous GP simulations [15,16], allows us to
perform an asymptotic matching.
We can therefore compute the difference, before and

after the reconnection, of BS linear momentum ΔPfil using
the positions of the filaments R#

1 ðs; t#Þ and R#
2 ðs; t#Þ

coming from the linear approximation. As shown in
Ref. [24], note that these depend only on the reconnection
angle ϕþ (or equivalently Ar) and the concavity param-
eter Λ. Within BS, the linear momentum is given as the line
integral PfilðtÞ ¼ ðρ0=2ÞΓ

H
Rðs; tÞ × dRðs; tÞ [27]. As the

total linear momentum of the superfluid is conserved in GP
[28], the linear momentum carried by the sound pulse
created after the reconnection must compensate the loss of
linear momentum accounted by ΔPfil and reads [24]

Ppulse ¼ −ΔPfil ∝ ð0; 0; 2 cscϕþÞ; ð4Þ

independently of the δlin chosen. This result is remarkable:
the sound pulse linear momentum is (overall) nonzero only
in the positive z direction, as observed in all our recon-
nection events, and its amplitude is independent of Λ and
minimal for ϕþ ¼ π=2.

FIG. 3. Three-dimensional rendering of the density field. White
contours display the vortices and density fluctuations are ren-
dered in blue-redish colors: (a) reconnection time and (b) at
t − tr ≈ 40τ. (b) The positive direction of the z axis is also
depicted with a white arrow. (c) Spatiotemporal plot of density
along the z axis about the reconnection event denoted by the blue
central point. The two dashed green lines are z ¼ cðt − trÞ; here,
the reconnection point (0,0) is represented by the blue dot.
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vortices, and the coarse-grained energy dissipation rate in clas-
sical turbulence, a quantity at the core of existent intermittency
models.

In this work, quantum and classical turbulent systems are,
respectively, studied using high-resolution direct numerical
simulations of a generalised GP and the incompressible
Navier–Stokes (NS) equations. Discrete vortices and their signs
are extracted from the GP fields and then analysed. To disen-
tangle the effects of polarisation and spatial vortex distribution,
we additionally study a disordered turbulence state. Such state is
generated from the discrete vortex data by randomly resetting the
sign of each individual vortex while keeping its position fixed. To
illustrate the differences between the turbulent (non-disordered)
and the disordered turbulence states, we plot in Fig. 2 the kinetic
energy spectrum associated to each vortex configuration (see
“Methods” for details on the computation of the spectra from
discrete vortices). First, we see that the turbulent case displays
a clear k−5/3 range, in agreement with the energy spectra
obtained from the full GP and NS fields. Note that, in the case
of GP fields, we show the incompressible kinetic energy
spectrum, which contains 86% of the total energy of the system—
the other components being the compressible, internal and
quantum energy20,22. Secondly, the K41 scaling disappears once
polarisation is artificially suppressed from the tangle, leading to a
trivial k−1 scaling range for the disordered state (see “Methods”
for a brief derivation). Note that this same scaling has already
been observed in vortex filament simulations, once the vortex
tangle has been decomposed into polarised and random
components26.

Fig. 1 Visualisation of a quantum turbulent vortex tangle. Instantaneous state obtained from GP simulations using 20483 collocation points. Green and
yellow colours correspond to opposite orientations of the vortex lines with respect to the vertical direction. The inset shows a horizontal two-dimensional
cut of the system. See “Methods” for the vortex identification algorithm.

Fig. 2 Kinetic energy spectrum in quantum and classical turbulence.
Spectra are obtained from simulations of the generalised Gross–Pitaevskii
(GP) model and the incompressible Navier–Stokes (NS) equations. Wave
numbers k are, respectively, normalised by the mean inter-vortex distance
ℓ and by the Taylor micro-scale λ, while the vertical axis is in arbitrary units.
In the GP case, the incompressible part of the kinetic energy is plotted63.
Also shown are the energy spectra obtained after applying the vortex
detection procedure to the GP fields (see “Methods” for details), both
before and after the randomisation of the vortex orientations (turbulent and
disordered cases, respectively). Dashed and dash-dotted lines, respectively,
represent the Kolmogorov scaling k−5/3 and the disordered scaling k−1.
Source data are provided as a Source Data file.
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Kelvin-wave cascade and dissipation in low-temperature superfluid vortices

Giorgio Krstulovic
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B.P. 4229, 06304 Nice Cedex 4, France
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We study the statistical properties of the Kelvin waves propagating along quantized superfluid vortices driven
by the Gross-Pitaevskii equation. No artificial forcing or dissipation is added. Vortex positions are accurately
tracked. This procedure directly allows us to obtain the Kevin-wave occupation-number spectrum. Numerical
data obtained from long time integration and ensemble average over initial conditions support the spectrum
proposed in L’vov and Nazarenko [JETP Lett. 91, 428 (2010)]. Kelvin-wave modes in the inertial range are found
to be Gaussian as expected by weak-turbulence predictions. Finally the dissipative range of the Kelvin-wave
spectrum is studied. Strong non-Gaussian fluctuations are observed in this range.

DOI: 10.1103/PhysRevE.86.055301 PACS number(s): 67.25.dk, 03.75.Kk, 47.37.+q, 67.25.dt

Superfluid turbulence has been the subject of many ex-
perimental and theoretical works for the last decades. It is
now possible to realize turbulent Bose-Einstein condensates
(BECs) [1], turbulent flows with 3He [2,3], and visualize
vortices in 4He [4]. As in classical turbulence [5], a Kol-
mogorov energy cascade has been observed experimentally
and numerically. In superfluids, this takes place at scales larger
than the mean intervortex distance ! [6–8]. At low temperature,
when damping due to mutual friction is negligible, it is
believed that dissipation at small scales is carried by phonon
radiation which dissipates energy into heat [9]. At scales
smaller than ! the energy is transferred down by a series
of reconnection processes of quantized vortices that excite
waves on the filaments. These perturbations, called Kelvin
waves (KWs), are known for more than one century [10]
in fluid dynamics. These waves obey a set of nonlinear
equations where the energy is transferred towards small
scales by a wave-turbulence cascade. The energy distribution
along different scales is crucial for the understanding of the
dissipative processes in superfluids. The energy spectrum of
such a cascade is not yet fully determined, except in the limit
of small-amplitude KWs, where the theory of weak turbulence
is applicable [11]. However, a heated debate on the locality of
KW energy transfer has taken place in the last years [12–17].
Two different groups, Kozik and Svistunov [18] and L’vov and
Nazarenko [19], starting from the very same equations and
by using the same theory, have derived two different spectra
(hereafter KS and LN spectra, respectively). The origin of this
controversy is mainly due to a symmetry argument by KS (tilt
of a vortex line) that eventually leads to a vanishing vertex in
the perturbative expansion. This leads to locality in the energy
transfer and makes the six-wave interaction theory realizable.
The energy spectrum found by KS is

EKS(k) ∼ ε1/5κ7/5k−7/5, (1)

where ε is the energy flux, κ is the circulation quantum, and k
is the wave vector. This symmetry argument was questioned by
LN and they claimed that the energy transfer is nonlocal. They
derived an effective four-wave interaction theory that leads to
the energy spectrum

ELN(k) ∼ κε1/3$−2/3k−5/3, (2)

where $ ∼ (1/κ)
∫

ELN(k)dk is the mean-square angular
deviation of the vortex. For more technical details on the con-
troversy see [13–17]. The exponent 7/5 = 1.4 and 5/3 ≈ 1.67
of (1) and (2) are supposed to be universal, but their relatively
close values makes it difficult to numerically elucidate which
theory is correct. A number of numerical works supporting
both theories have been published but none presenting strong
arguments to settle this controversy [17,20,21]. These works
are all done in the framework of the vortex filament with an
ad hoc dissipative mechanism. In the case of strong wave
turbulence, when the local slope of KW is order 1, weak
turbulence breaks down and Vinen et al. [22] propose a
spectrum scaling as k−1. Finally, It was suggested by Sonin
[16] that no universality can be expected.

In this Rapid Communication, we address the small-
amplitude KW cascade problem by performing direct numer-
ical simulations of the Gross-Pitaevskii equation (GPE). The
GPE describes a weakly interacting BEC at low temperature. It
is also expected to at least qualitatively reproduce the dynamics
of superfluid helium. As the Gross-Pitaevskii (GP) vortices can
naturally radiate and excite phonons no artificial dissipation
is needed. The (1D) KW occupation-number spectrum is
precisely obtained and data are found to support the wave-
turbulence prediction (LN) [19]. The KW spectrum is analyzed
within the dissipative range and an exponential decay is found.
Finally, the probability distribution function (PDF) of KW
amplitudes is observed to be Gaussian in the inertial range in
contrast with the power-law tails observed for modes in the
dissipative range.

The GPE describing a homogeneous BEC of volume V
with wave function ψ is given by

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + g|ψ |2ψ, (3)

where m is the mass of the condensed particles and g =
4πah̄2/m, with a the s-wave scattering length. Equation (3)
conserves the energy H =

∫
( h̄2

2m
|∇ψ |2 + g

2 |ψ |4)dx and the
number of particles N =

∫
|ψ |2dx. Madelung’s transforma-

tion ψ(x,t) =
√

ρ(x,t)
m

exp [i m
h̄
φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ,
where κ = h/m is the Onsager-Feynman quantum of velocity
circulation around the ψ = 0 vortex lines. When Eq. (3) is
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CHAPTER 3. KELVIN WAVES 3.3. Non-linear Kelvin wave dynamics
Injection of energy
at large scales

Dissipation of energy
at small scales

Flux of energy
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energy dissipation

k1
<latexit sha1_base64="wWG72H9KfIEhCOGscIP22QzA1cU=">AAACAXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOTSTJkdmeZ6RXCkpNnr/oN3sSrX+In+BfOJnvQxIKGoqqb7q4glsKg6345K6tr6xubha3i9s7u3n7p4LBpVKIZbzAllW4H1HApIt5AgZK3Y81pGEjeCsY3md965NoIFT3gJOZ+SIeRGAhG0Ur3457XK5XdijsDWSZeTsqQo94rfXf7iiUhj5BJakzHc2P0U6pRMMmnxW5ieEzZmA55x9KIhtz46ezUKTm1Sp8MlLYVIZmpvydSGhozCQPbGVIcmUUvE//1MgWVkmbhABxc+amI4gR5xOb7B4kkqEgWB+kLzRnKiSWUaWFfIGxENWVoQyvabLzFJJZJs1rxzivVu4ty7TpPqQDHcAJn4MEl1OAW6tAABkN4hhd4dZ6cN+fd+Zi3rjj5zBH8gfP5A4Uyl3M=</latexit>

k2
<latexit sha1_base64="RJwnIr8DogA/in/96Z8mI+w53W4=">AAACAXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOTSTJkdmeZ6RXCkpNnr/oN3sSrX+In+BfOJnvQxIKGoqqb7q4glsKg6345K6tr6xubha3i9s7u3n7p4LBpVKIZbzAllW4H1HApIt5AgZK3Y81pGEjeCsY3md965NoIFT3gJOZ+SIeRGAhG0Ur34161Vyq7FXcGsky8nJQhR71X+u72FUtCHiGT1JiO58bop1SjYJJPi93E8JiyMR3yjqURDbnx09mpU3JqlT4ZKG0rQjJTf0+kNDRmEga2M6Q4MoteJv7rZQoqJc3CATi48lMRxQnyiM33DxJJUJEsDtIXmjOUE0so08K+QNiIasrQhla02XiLSSyTZrXinVeqdxfl2nWeUgGO4QTOwINLqMEt1KEBDIbwDC/w6jw5b8678zFvXXHymSP4A+fzB4bNl3Q=</latexit>

k3
<latexit sha1_base64="anzV/AwG8lKRCIWBsvgNIraJBcc=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgKewmgh6DXjxGNA9IljA7mU2GzM4sM71CWHLy7FW/wZt49Uv8BP/C2WQPmljQUFR1090VxIIbcN0vp7C2vrG5Vdwu7ezu7R+UD4/aRiWashZVQuluQAwTXLIWcBCsG2tGokCwTjC5yfzOI9OGK/kA05j5ERlJHnJKwEr3k0F9UK64VXcOvEq8nFRQjuag/N0fKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnqWSRMz46fzUGT6zyhCHStuSgOfq74mURMZMo8B2RgTGZtnLxH+9TAGlhFk6AMIrP+UyToBJutgfJgKDwlkceMg1oyCmlhCquX0B0zHRhIINrWSz8ZaTWCXtWtWrV2t3F5XGdZ5SEZ2gU3SOPHSJGugWNVELUTRCz+gFvTpPzpvz7nwsWgtOPnOM/sD5/AGIaJd1</latexit>

k1
<latexit sha1_base64="wWG72H9KfIEhCOGscIP22QzA1cU=">AAACAXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOTSTJkdmeZ6RXCkpNnr/oN3sSrX+In+BfOJnvQxIKGoqqb7q4glsKg6345K6tr6xubha3i9s7u3n7p4LBpVKIZbzAllW4H1HApIt5AgZK3Y81pGEjeCsY3md965NoIFT3gJOZ+SIeRGAhG0Ur3457XK5XdijsDWSZeTsqQo94rfXf7iiUhj5BJakzHc2P0U6pRMMmnxW5ieEzZmA55x9KIhtz46ezUKTm1Sp8MlLYVIZmpvydSGhozCQPbGVIcmUUvE//1MgWVkmbhABxc+amI4gR5xOb7B4kkqEgWB+kLzRnKiSWUaWFfIGxENWVoQyvabLzFJJZJs1rxzivVu4ty7TpPqQDHcAJn4MEl1OAW6tAABkN4hhd4dZ6cN+fd+Zi3rjj5zBH8gfP5A4Uyl3M=</latexit>

k2
<latexit sha1_base64="RJwnIr8DogA/in/96Z8mI+w53W4=">AAACAXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOTSTJkdmeZ6RXCkpNnr/oN3sSrX+In+BfOJnvQxIKGoqqb7q4glsKg6345K6tr6xubha3i9s7u3n7p4LBpVKIZbzAllW4H1HApIt5AgZK3Y81pGEjeCsY3md965NoIFT3gJOZ+SIeRGAhG0Ur34161Vyq7FXcGsky8nJQhR71X+u72FUtCHiGT1JiO58bop1SjYJJPi93E8JiyMR3yjqURDbnx09mpU3JqlT4ZKG0rQjJTf0+kNDRmEga2M6Q4MoteJv7rZQoqJc3CATi48lMRxQnyiM33DxJJUJEsDtIXmjOUE0so08K+QNiIasrQhla02XiLSSyTZrXinVeqdxfl2nWeUgGO4QTOwINLqMEt1KEBDIbwDC/w6jw5b8678zFvXXHymSP4A+fzB4bNl3Q=</latexit>

k3
<latexit sha1_base64="anzV/AwG8lKRCIWBsvgNIraJBcc=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgKewmgh6DXjxGNA9IljA7mU2GzM4sM71CWHLy7FW/wZt49Uv8BP/C2WQPmljQUFR1090VxIIbcN0vp7C2vrG5Vdwu7ezu7R+UD4/aRiWashZVQuluQAwTXLIWcBCsG2tGokCwTjC5yfzOI9OGK/kA05j5ERlJHnJKwEr3k0F9UK64VXcOvEq8nFRQjuag/N0fKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnqWSRMz46fzUGT6zyhCHStuSgOfq74mURMZMo8B2RgTGZtnLxH+9TAGlhFk6AMIrP+UyToBJutgfJgKDwlkceMg1oyCmlhCquX0B0zHRhIINrWSz8ZaTWCXtWtWrV2t3F5XGdZ5SEZ2gU3SOPHSJGugWNVELUTRCz+gFvTpPzpvz7nwsWgtOPnOM/sD5/AGIaJd1</latexit>

k4
<latexit sha1_base64="l7uXgco6lwrk50pa3I0pZCmPbxM=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgKezGgB6DXjxGNA9IljA7mU2GzM4sM71CWHLy7FW/wZt49Uv8BP/C2WQPmljQUFR1090VxIIbcN0vp7C2vrG5Vdwu7ezu7R+UD4/aRiWashZVQuluQAwTXLIWcBCsG2tGokCwTjC5yfzOI9OGK/kA05j5ERlJHnJKwEr3k0F9UK64VXcOvEq8nFRQjuag/N0fKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnqWSRMz46fzUGT6zyhCHStuSgOfq74mURMZMo8B2RgTGZtnLxH+9TAGlhFk6AMIrP+UyToBJutgfJgKDwlkceMg1oyCmlhCquX0B0zHRhIINrWSz8ZaTWCXtWtW7qNbu6pXGdZ5SEZ2gU3SOPHSJGugWNVELUTRCz+gFvTpPzpvz7nwsWgtOPnOM/sD5/AGKA5d2</latexit>

k1
<latexit sha1_base64="wWG72H9KfIEhCOGscIP22QzA1cU=">AAACAXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOTSTJkdmeZ6RXCkpNnr/oN3sSrX+In+BfOJnvQxIKGoqqb7q4glsKg6345K6tr6xubha3i9s7u3n7p4LBpVKIZbzAllW4H1HApIt5AgZK3Y81pGEjeCsY3md965NoIFT3gJOZ+SIeRGAhG0Ur3457XK5XdijsDWSZeTsqQo94rfXf7iiUhj5BJakzHc2P0U6pRMMmnxW5ieEzZmA55x9KIhtz46ezUKTm1Sp8MlLYVIZmpvydSGhozCQPbGVIcmUUvE//1MgWVkmbhABxc+amI4gR5xOb7B4kkqEgWB+kLzRnKiSWUaWFfIGxENWVoQyvabLzFJJZJs1rxzivVu4ty7TpPqQDHcAJn4MEl1OAW6tAABkN4hhd4dZ6cN+fd+Zi3rjj5zBH8gfP5A4Uyl3M=</latexit>

k2
<latexit sha1_base64="RJwnIr8DogA/in/96Z8mI+w53W4=">AAACAXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOTSTJkdmeZ6RXCkpNnr/oN3sSrX+In+BfOJnvQxIKGoqqb7q4glsKg6345K6tr6xubha3i9s7u3n7p4LBpVKIZbzAllW4H1HApIt5AgZK3Y81pGEjeCsY3md965NoIFT3gJOZ+SIeRGAhG0Ur34161Vyq7FXcGsky8nJQhR71X+u72FUtCHiGT1JiO58bop1SjYJJPi93E8JiyMR3yjqURDbnx09mpU3JqlT4ZKG0rQjJTf0+kNDRmEga2M6Q4MoteJv7rZQoqJc3CATi48lMRxQnyiM33DxJJUJEsDtIXmjOUE0so08K+QNiIasrQhla02XiLSSyTZrXinVeqdxfl2nWeUgGO4QTOwINLqMEt1KEBDIbwDC/w6jw5b8678zFvXXHymSP4A+fzB4bNl3Q=</latexit>

k3
<latexit sha1_base64="anzV/AwG8lKRCIWBsvgNIraJBcc=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgKewmgh6DXjxGNA9IljA7mU2GzM4sM71CWHLy7FW/wZt49Uv8BP/C2WQPmljQUFR1090VxIIbcN0vp7C2vrG5Vdwu7ezu7R+UD4/aRiWashZVQuluQAwTXLIWcBCsG2tGokCwTjC5yfzOI9OGK/kA05j5ERlJHnJKwEr3k0F9UK64VXcOvEq8nFRQjuag/N0fKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnqWSRMz46fzUGT6zyhCHStuSgOfq74mURMZMo8B2RgTGZtnLxH+9TAGlhFk6AMIrP+UyToBJutgfJgKDwlkceMg1oyCmlhCquX0B0zHRhIINrWSz8ZaTWCXtWtWrV2t3F5XGdZ5SEZ2gU3SOPHSJGugWNVELUTRCz+gFvTpPzpvz7nwsWgtOPnOM/sD5/AGIaJd1</latexit>

k4
<latexit sha1_base64="l7uXgco6lwrk50pa3I0pZCmPbxM=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgKezGgB6DXjxGNA9IljA7mU2GzM4sM71CWHLy7FW/wZt49Uv8BP/C2WQPmljQUFR1090VxIIbcN0vp7C2vrG5Vdwu7ezu7R+UD4/aRiWashZVQuluQAwTXLIWcBCsG2tGokCwTjC5yfzOI9OGK/kA05j5ERlJHnJKwEr3k0F9UK64VXcOvEq8nFRQjuag/N0fKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnqWSRMz46fzUGT6zyhCHStuSgOfq74mURMZMo8B2RgTGZtnLxH+9TAGlhFk6AMIrP+UyToBJutgfJgKDwlkceMg1oyCmlhCquX0B0zHRhIINrWSz8ZaTWCXtWtW7qNbu6pXGdZ5SEZ2gU3SOPHSJGugWNVELUTRCz+gFvTpPzpvz7nwsWgtOPnOM/sD5/AGKA5d2</latexit>

k1
<latexit sha1_base64="wWG72H9KfIEhCOGscIP22QzA1cU=">AAACAXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOTSTJkdmeZ6RXCkpNnr/oN3sSrX+In+BfOJnvQxIKGoqqb7q4glsKg6345K6tr6xubha3i9s7u3n7p4LBpVKIZbzAllW4H1HApIt5AgZK3Y81pGEjeCsY3md965NoIFT3gJOZ+SIeRGAhG0Ur3457XK5XdijsDWSZeTsqQo94rfXf7iiUhj5BJakzHc2P0U6pRMMmnxW5ieEzZmA55x9KIhtz46ezUKTm1Sp8MlLYVIZmpvydSGhozCQPbGVIcmUUvE//1MgWVkmbhABxc+amI4gR5xOb7B4kkqEgWB+kLzRnKiSWUaWFfIGxENWVoQyvabLzFJJZJs1rxzivVu4ty7TpPqQDHcAJn4MEl1OAW6tAABkN4hhd4dZ6cN+fd+Zi3rjj5zBH8gfP5A4Uyl3M=</latexit>

k2
<latexit sha1_base64="RJwnIr8DogA/in/96Z8mI+w53W4=">AAACAXicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOTSTJkdmeZ6RXCkpNnr/oN3sSrX+In+BfOJnvQxIKGoqqb7q4glsKg6345K6tr6xubha3i9s7u3n7p4LBpVKIZbzAllW4H1HApIt5AgZK3Y81pGEjeCsY3md965NoIFT3gJOZ+SIeRGAhG0Ur34161Vyq7FXcGsky8nJQhR71X+u72FUtCHiGT1JiO58bop1SjYJJPi93E8JiyMR3yjqURDbnx09mpU3JqlT4ZKG0rQjJTf0+kNDRmEga2M6Q4MoteJv7rZQoqJc3CATi48lMRxQnyiM33DxJJUJEsDtIXmjOUE0so08K+QNiIasrQhla02XiLSSyTZrXinVeqdxfl2nWeUgGO4QTOwINLqMEt1KEBDIbwDC/w6jw5b8678zFvXXHymSP4A+fzB4bNl3Q=</latexit>

k3
<latexit sha1_base64="anzV/AwG8lKRCIWBsvgNIraJBcc=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgKewmgh6DXjxGNA9IljA7mU2GzM4sM71CWHLy7FW/wZt49Uv8BP/C2WQPmljQUFR1090VxIIbcN0vp7C2vrG5Vdwu7ezu7R+UD4/aRiWashZVQuluQAwTXLIWcBCsG2tGokCwTjC5yfzOI9OGK/kA05j5ERlJHnJKwEr3k0F9UK64VXcOvEq8nFRQjuag/N0fKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnqWSRMz46fzUGT6zyhCHStuSgOfq74mURMZMo8B2RgTGZtnLxH+9TAGlhFk6AMIrP+UyToBJutgfJgKDwlkceMg1oyCmlhCquX0B0zHRhIINrWSz8ZaTWCXtWtWrV2t3F5XGdZ5SEZ2gU3SOPHSJGugWNVELUTRCz+gFvTpPzpvz7nwsWgtOPnOM/sD5/AGIaJd1</latexit>

k4
<latexit sha1_base64="l7uXgco6lwrk50pa3I0pZCmPbxM=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgKezGgB6DXjxGNA9IljA7mU2GzM4sM71CWHLy7FW/wZt49Uv8BP/C2WQPmljQUFR1090VxIIbcN0vp7C2vrG5Vdwu7ezu7R+UD4/aRiWashZVQuluQAwTXLIWcBCsG2tGokCwTjC5yfzOI9OGK/kA05j5ERlJHnJKwEr3k0F9UK64VXcOvEq8nFRQjuag/N0fKppETAIVxJie58bgp0QDp4LNSv3EsJjQCRmxnqWSRMz46fzUGT6zyhCHStuSgOfq74mURMZMo8B2RgTGZtnLxH+9TAGlhFk6AMIrP+UyToBJutgfJgKDwlkceMg1oyCmlhCquX0B0zHRhIINrWSz8ZaTWCXtWtW7qNbu6pXGdZ5SEZ2gU3SOPHSJGugWNVELUTRCz+gFvTpPzpvz7nwsWgtOPnOM/sD5/AGKA5d2</latexit>

k5
<latexit sha1_base64="Yr2PKzGGfcmY1VEfDaTCh3Rm1dY=">AAACAXicbVDLSgNBEOyNrxhfUY9eBoPgKexGRY9BLx4jmgckS5idzCZDZmeWmVkhLDl59qrf4E28+iV+gn/hbLIHTSxoKKq66e4KYs60cd0vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4JvPbj1RpJsWDmcTUj/BQsJARbKx0P+5f9MsVt+rOgJaJl5MK5Gj0y9+9gSRJRIUhHGvd9dzY+ClWhhFOp6VeommMyRgPaddSgSOq/XR26hSdWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSil4n/eplipOR64QATXvkpE3FiqCDz/WHCkZEoiwMNmKLE8IklmChmX0BkhBUmxoZWstl4i0ksk1at6p1Va3fnlfp1nlIRjuAYTsGDS6jDLTSgCQSG8Awv8Oo8OW/Ou/Mxby04+cwh/IHz+QOLnpd3</latexit>

k6
<latexit sha1_base64="cdPjja4jiCYr8+qZlJErJbSdSqI=">AAACAXicbVDLSgNBEOyNrxhfUY9eBoPgKexGUY9BLx4jmgckS5idzCZDZmeWmVkhLDl59qrf4E28+iV+gn/hbLIHTSxoKKq66e4KYs60cd0vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4JvPbj1RpJsWDmcTUj/BQsJARbKx0P+5f9MsVt+rOgJaJl5MK5Gj0y9+9gSRJRIUhHGvd9dzY+ClWhhFOp6VeommMyRgPaddSgSOq/XR26hSdWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSil4n/eplipOR64QATXvkpE3FiqCDz/WHCkZEoiwMNmKLE8IklmChmX0BkhBUmxoZWstl4i0ksk1at6p1Va3fnlfp1nlIRjuAYTsGDS6jDLTSgCQSG8Awv8Oo8OW/Ou/Mxby04+cwh/IHz+QONOZd4</latexit>

a) b) 3 �! 1
<latexit sha1_base64="dPjZTsFyjdA7orDuvkcWP/UNtwU=">AAACEXicbVDLSsNAFJ3UV62vVJdugkVwVZJW0GXRjcsK9gFtKJPpJB06mQkzN5YS+hWu3eo3uBO3foGf4F84bbPQ1gMXDufcy733BAlnGlz3yypsbG5t7xR3S3v7B4dHdvm4rWWqCG0RyaXqBlhTzgRtAQNOu4miOA447QTj27nfeaRKMykeYJpQP8aRYCEjGIw0sMv1PpciUiwaAVZKTryBXXGr7gLOOvFyUkE5mgP7uz+UJI2pAMKx1j3PTcDPsAJGOJ2V+qmmCSZjHNGeoQLHVPvZ4vSZc26UoRNKZUqAs1B/T2Q41noaB6YzxjDSq95c/NebKyAl1ysHQHjtZ0wkKVBBlvvDlDsgnXk8zpApSoBPDcFEMfOCQ0ZYYQImxJLJxltNYp20a1WvXq3dX1YaN3lKRXSKztAF8tAVaqA71EQtRNAEPaMX9Go9WW/Wu/WxbC1Y+cwJ+gPr8wdzGJ3u</latexit>

2 �! 1
<latexit sha1_base64="Q+d2fFmRvfFM5qxot5W1mQAwPK0=">AAACEXicbVDLSsNAFJ34rPWV6tJNsAiuSlIFXRbduKxgH9CGMplO0qGTmTBzYymhX+HarX6DO3HrF/gJ/oWTNgttPXDhcM693HtPkHCmwXW/rLX1jc2t7dJOeXdv/+DQrhy1tUwVoS0iuVTdAGvKmaAtYMBpN1EUxwGnnWB8m/udR6o0k+IBpgn1YxwJFjKCwUgDu1LvcykixaIRYKXkxBvYVbfmzuGsEq8gVVSgObC/+0NJ0pgKIBxr3fPcBPwMK2CE01m5n2qaYDLGEe0ZKnBMtZ/NT585Z0YZOqFUpgQ4c/X3RIZjradxYDpjDCO97OXiv16ugJRcLx0A4bWfMZGkQAVZ7A9T7oB08nicIVOUAJ8agoli5gWHjLDCBEyIZZONt5zEKmnXa95FrX5/WW3cFCmV0Ak6RefIQ1eoge5QE7UQQRP0jF7Qq/VkvVnv1seidc0qZo7RH1ifP3Ftne0=</latexit>

2 �! 2
<latexit sha1_base64="UBwJpv37ok+Mn57PGDRRrAR00/o=">AAACEXicbVDLSsNAFJ34rPWV6tJNsAiuSlIFXRbduKxgH9CGMplO0qGTmTBzYymhX+HarX6DO3HrF/gJ/oWTNgttPXDhcM693HtPkHCmwXW/rLX1jc2t7dJOeXdv/+DQrhy1tUwVoS0iuVTdAGvKmaAtYMBpN1EUxwGnnWB8m/udR6o0k+IBpgn1YxwJFjKCwUgDu1LvcykixaIRYKXkpD6wq27NncNZJV5BqqhAc2B/94eSpDEVQDjWuue5CfgZVsAIp7NyP9U0wWSMI9ozVOCYaj+bnz5zzowydEKpTAlw5urviQzHWk/jwHTGGEZ62cvFf71cASm5XjoAwms/YyJJgQqy2B+m3AHp5PE4Q6YoAT41BBPFzAsOGWGFCZgQyyYbbzmJVdKu17yLWv3+stq4KVIqoRN0is6Rh65QA92hJmohgiboGb2gV+vJerPerY9F65pVzByjP7A+fwBzCJ3u</latexit>

3 �! 3
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Figure 3.4: Sketch of wave turbulence cascades. a) Waves of large wavelengths interact and excite waves
at smaller wavelengths and those repeat the process until energy is dissipated. The inverse cascade process
can take place for wave action. b) Di↵erent kinds of wave are depicted by arrows with obvious notation
: 2 ! 1, 3 ! 1, 2 ! 2 and 3 ! 3.

figure 3.4.a, where a direct energy cascade and/or an inverse wave-action cascade takes place. The wave-
action is an extra invariant of some non-linear wave systems, such as the free particle excitations of the
Gross-Piteavskii equation (see Section 2.1.2).

For sake of simplicity, we will consider here a non-linear wave system with a cubic non-linearity. In
general, after performing a Fourier transform, and eventually of some change of variables, such system
can be rewritten as
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dk1dk2dk3, (3.44)

where s, s1, s2, s3 = ±1 and we use the notation a+k = ak and a�k = a⇤k. The term Ls,s1,s2,s3
k,k1,k2,k3

is the
interaction coe�cient and is usually assumed to have some scaling properties with k. We have also
implicitly assumed that waves amplitudes have been rescaled so ak is of order one and ✏ is a small
parameter.

The theory of weak wave turbulence takes advantage of the small parameter ✏ to develop a closed
model that can be treated analytically. Thanks to this small parameter, a large time scale separation
between the time associated to waves and the one related to the non-linear terms is ensured. This allow
for a controlled multi-time expansion [NR11]. The main object of study in the theory is the particle
number spectrum defined as

nk =
1

V
h|ak|

2
i, (3.45)

where V is the volume of the system and average is performed over di↵erent kinds of fluctuations (e.g.
realisations of the initial conditions, forcing, etc.).

Summarised in one sentence, the theory of weak wave turbulence starts from nk, takes its time
derivative, use equation (3.44) several times, then take some very delicate limits and finally succeed to
obtain a closed equation for nk. This equation is called the kinetic wave equation and can be generically
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Figure 3.4: Sketch of wave turbulence cascades. a) Waves of large wavelengths interact and excite waves
at smaller wavelengths and those repeat the process until energy is dissipated. The inverse cascade process
can take place for wave action. b) Di↵erent kinds of wave are depicted by arrows with obvious notation
: 2 ! 1, 3 ! 1, 2 ! 2 and 3 ! 3.

figure 3.4.a, where a direct energy cascade and/or an inverse wave-action cascade takes place. The wave-
action is an extra invariant of some non-linear wave systems, such as the free particle excitations of the
Gross-Piteavskii equation (see Section 2.1.2).

For sake of simplicity, we will consider here a non-linear wave system with a cubic non-linearity. In
general, after performing a Fourier transform, and eventually of some change of variables, such system
can be rewritten as

das

k

dt
= �is!ka

s

k + ✏2
X

s1,s2,s3

Z
Ls,s1,s2,s3
k,k1,k2,k3

�(k + s1k1 + s2k2 + s3k3)a
s1
k1

as2
k2

as3
k3

dk1dk2dk3, (3.44)

where s, s1, s2, s3 = ±1 and we use the notation a+k = ak and a�k = a⇤k. The term Ls,s1,s2,s3
k,k1,k2,k3

is the
interaction coe�cient and is usually assumed to have some scaling properties with k. We have also
implicitly assumed that waves amplitudes have been rescaled so ak is of order one and ✏ is a small
parameter.

The theory of weak wave turbulence takes advantage of the small parameter ✏ to develop a closed
model that can be treated analytically. Thanks to this small parameter, a large time scale separation
between the time associated to waves and the one related to the non-linear terms is ensured. This allow
for a controlled multi-time expansion [NR11]. The main object of study in the theory is the particle
number spectrum defined as

nk =
1

V
h|ak|

2
i, (3.45)

where V is the volume of the system and average is performed over di↵erent kinds of fluctuations (e.g.
realisations of the initial conditions, forcing, etc.).

Summarised in one sentence, the theory of weak wave turbulence starts from nk, takes its time
derivative, use equation (3.44) several times, then take some very delicate limits and finally succeed to
obtain a closed equation for nk. This equation is called the kinetic wave equation and can be generically

29

ψ = 0 + δψ Cubic nonlinearity

Matter waves : ωk =
ℏ

2m
k2



Wave Turbulence Theory (WWT)
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WWT:  mathematical framework describing 
the statistical behaviour of  WT dominated by 
weakly nonlinear waves.                                                  

second-order moment of the wave amplitudesimilar to Boltzmann Equation
Wave-kinetic equation:    evolution of the wave-action spectrum                                                

WWT formalism

Stage 1:  deriving the wave-kinetic equation (WKE),
             and/or equation for 1-mode PDF
Stage 2:  analysis based on above equations, 
             KZ spectra,   non-stationary evolution, 
             joint PDF,  …

Condition to apply WWT:  separation of spatial scales and time scales

Towards strong waves:  critical balance, wave breaking …



Four-wave regime: dual cascades

Dual cascade in wave turbulence turbulence

kf
kk kk+−

DirectInverse
Cascade of Waveaction Energy cascade

In GPE waveaction is N

• Like in 2D Euler, the ratio of densities of the two invariants is k2

• Mapping 2D Euler to GPE invariants:   E → N, Ω → E .

N = ∫ 4πk2nk, E = ∫ 4πk2ωknk = ∫ 4πk4nkTwo invariants
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following expression:

P = 32π

kk1k2k3

∫
d"r

∫ ∞

0

sin(rk)
r2

3∏

j=1

sin(rk j )dr

= 8π3

kk1k2k3
(−|k + k1 − k2 − k3| − |k − k1 + k2 − k3|

+ |k + k1 + k2 − k3| − |k − k1 − k2 + k3|
+ |k + k1 − k2 + k3| + |k − k1 + k2 + k3|
+ | − k + k1 + k2 + k3| − |k + k1 + k2 + k3|).

This expression can be considerably simplified after taking
into account the four-wave frequency resonance condition

k2 + k2
1 = k2

2 + k2
3 .

This leads to

P = 32π3

kk1k2k3
min(k, k1, k2, k3).

Substituting this into (A1), we obtain the angle-averaged
WKE:

dnk

dt
= 32π3

k

∫
min(k, k1, k2, k3)δ23

1ωnkn1n2n3

(
1
nk

+ 1
n1

− 1
n2

− 1
n3

)
k1k2k3dk1dk2dk3. (A7)

The last point, which we shall address here, is passage
in (A7) to the frequency variables ω = k2 and ω j = k2

j , j =
1, 2, 3. Using the expressions k =

√
ω, dk = 1

2ω−1/2, k j =
√

ω j , dk j = 1
2ω

−1/2
j , and denoting nω = nk and

S(ω,ω1,ω2,ω3) = min(
√

ω,
√

ω1,
√

ω2,
√

ω3),

one obtains (10) from (A7).

APPENDIX B: EXTRA NUMERICAL DETAILS
FOR THE WKE

An important block of the algorithm for solving the WKE,
which should be mentioned first, is an accurate and fast com-
putation of the collision integral on the RHS of (12). To
perform such a computation, the cubature formulas proposed
in [13] are applied, which requires us to decompose the do-
main of integration %ω in (13) and (14). In our study, %ω is
represented as "1 ∪ "2 (gray area in Fig. 11), where

"1 = {(ω2,ω3) : ω2,ω3 ! 0, 0 " ω2 + ω3 − ω " ωmax},
"2 = {(ω2,ω3) : ω2,ω3 " ωmax, ω2 + ω3 − ω ! ωmax}.

The integrands of the RHSs of (13) and (14) have sin-
gularities along the lines ω2 = ω, ω3 = ω, ω2 = ωmin, ω3 =

FIG. 11. Domain of integration %ω in the plain (ω2, ω3) and its
decomposition.

ωmin, ω2 + ω3 − ω = ωmin denoted by dashed lines in Fig. 11,
where the first- and higher-order derivatives of the integrands
can have discontinuities. Therefore, to design cubature for-
mulas with an exponential rate of convergence, %ω must be
cut along these lines and decomposed into a triangular, a
rectangular, and a trapezoidal subdomain, as shown in Fig. 11.
Inside each subdomain, the integrands are infinitely differen-
tiable functions; see [13] and the reasoning presented there.
Each of the subdomains is mapped onto the reference square
[−1, 1]2 (see [50] for additional details), and tensor prod-
ucts of the modified Clenshaw-Curtis formulas are used to
compute the integrals. It should be noted that, in contrast to
the formulation considered in [13], here we have a bounded
domain of integration (gray area in Fig. 11), which some-
what simplifies the problem. The contributions to the collision
term from the triangles %1,%2 are the integrals of the terms
S23

ω ncn3 and S23
ω ncn2 in (14), respectively. The contribution

from the domain "2 is the integral of S23
ω n2n3. Integration

over other subdomains of %ω includes all the terms in (13)
and (14).

Now, let us address the problem of approximating the
solution of the WKE, nω(t ). Here, first of all one should
choose an appropriate interval of approximation with respect
to the variable ω. Since the spectrum vanishes at large ω very
rapidly, it is enough to build approximation on the finite inter-
val [ωmin,ωmax] with large enough ωmax and set nω(t ) = 0 for
any t < T and ω > ωmax. One should also take into account
that the solution of the WKE blows up at the zero mode at
some finite time t∗. Moreover, in the vicinity of t = t∗ the
spectrum demonstrates a self-similar behavior with constant
value at small ω; see [8–10,13] for details. To exclude the
singularity at ω = 0, we choose a small positive ωmin and
fix the value nω(t ) = nωmin (t ) for all ω < ωmin at a given time
moment t < T . This value is included in the integral over the
thin layer between the dashed line and the outer boundary of
%ω (see Fig. 11). Here, following the above results, we set
T = 100.

For approximating WKE with respect to the time variable,
we use the Runge-Kutta method of order 2 (RK2), we intro-
duce the uniform grid with the step dt and the nodes t j = jdt ,
j = 0, 1, . . . , and we implement an explicit time-marching

014205-14



Forcing and dissipation setup

forcing

dissipation
kf

kk kk+−

DirectInverse
Cascade of Waveaction Energy cascade

dissipation

One cascade can not live without the other one !



BEC wave turbulence in a trap

 

+ forcing + dissipation

iℏ
∂ψ
∂t

= −
ℏ2

2m
∇2ψ + U(x)ψ + g |ψ |2 ψ

4

the range where P (k) is approximately constant. The
same values of P0 are used in (12). The values of kf ,
as presented in Tab. I, are selected within the range of
forcing. For comparison, we also plot the compensated
KZ spectra ⇠ nkk

3 (ignoring the non-locality issue) and
⇠ nkk

3.5 for the GPE data with Np = 1024. We see an
excellent agreement between (12) and GPE and WKE
data including the value of the constant Cd. The ver-
tical dotted line denotes the wave vector k⇠ where the
nonlinear term in the GPE becomes equal to the linear
one. WT prediction is expected to be valid at k > k⇠

only. Further, the asymptotic result (12) is assumed for
k � kf . Interestingly, the theoretical log-corrected KZ
spectrum provides a very good fit to the numerical re-
sults even at the scales k . k⇠ ⇠ kf . Note that GPE
data with Np = 1024 present a relatively good agree-
ment with k

�3.5 too, although in a much narrower range
and only at low k, which is consistent with the results
reported in [7].

Next, we study the inverse cascade state. Figure 2
shows the wave action spectra and the particle fluxes
Q(k) (on insets normalized by |Q0|) obtained in GPE
and WKE simulations. Spectra are compensated by the
theoretical prediction (10) including the value of the pre-
factor Ci. Again, for GPE data we mark k⇠ by a vertical
dotted line. For both GPE and WKE we see a significant
range (within the constant-Q region) where the compen-
sated spectra have plateaus, which confirms the predicted
spectrum (10). The agreement between theory and nu-
merics is almost perfect for WKE data and within 5% for
GPE. Note that in both simulations we see a ”bump” on
the left part of the spectrum, which could be attributed
to an infrared bottleneck caused by the nature of the
hypo-viscous dissipation.

FIG. 2: Wave action spectra for the inverse cascade
compensated by theoretical prediction (10). Data

obtained by GPE at two di↵erent resolutions and by
WKE, respectively. Insets: corresponding particle fluxes
normalized by their values measured in inertial range.

Finally, to check the reliability of our predictions in
a setting closer to experiments, we study the direct and
inverse cascades for BEC trapped in a cubic box. To this
end, while solving (1) we consider a trapping potential
U(x) that vanishes inside the box and increases rapidly
at the borders of the cube (see SM for an exact defini-
tion). Figure 3 (a) displays a two-dimensional cut of a

Ltrap

(a)
U(x)| (x)|2

Ltrap
x

(a)

10�2 10�1 100 101

k/kf

10�5

10�2

101

104

n
(k

)/
n
(k

f) ⇣
ktrap

kf

⌘

(b)
direct cascade
inverse cascade

FIG. 3: GPE simulations of turbulent trapped BEC.
(a) Two-dimensional cut of a typical simulation

(arbitrary units and scales). The trapping potential is
displayed in red and density fluctuations in blue. (b)
Wave action spectra normalized by their values at the

respective forcing scales kf for the direct and the inverse
cascades. The solid lines display the theoretical

predictions (10,12). The vertical lines show the wave
number ktrap = 2⇡/Ltrap for both of the cascades, with

Ltrap the trap size.

typical simulation where we plot the trapping potential
and the wave-field. We keep the same forcing and dis-
sipation schemes and the parameters of case 1 and case
3 in Tab. I respectively. The results for both the direct
and the inverse cascades are shown in Fig. 3, superim-
posed with the theoretical KZ spectra (solid lines) with-
out any fitting parameters. Once again, one can see a
nearly perfect agreement, which indicates robustness of
our theoretical predictions and their relevance to the past
and future experiments on BEC turbulence. It might be
convenient for comparison with experiments to rewrite
our predictions (12, 10) in dimensional form. In terms of
the reduced Planck constant ~, the interaction constant
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Steady particle cascade

Forcing and dissipation setup
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Advanced GPE simulations for wave turbulence dynamics

i
∂ψ̂k(t)

∂t
= k2ψ̂k(t) + ∑

k+k1=k2+k3

ψ̂*k1
(t)ψ̂k2

(t)ψ̂k3
(t) + iFk − iDkψ̂k(t)

• High-resolution, massively-parallel code with MPI/OpenMP  5123 − 15363

• Pseudo-spectral method .vs. finite difference scheme

|ψ(x, t) |2 ψ(x, t)∑
k+k1=k2+k3

ψ̂*k1
(t)ψ̂k2

(t)ψ̂k3
(t) triply-periodic cube

• De-aliasing and conservation, clean flux

k/kf

• Stochastic forcing

dFk(t) = − γψ̂kdt + f0 dWk , N ∼ t , E ∼ t2

• Hyper-viscosity and hypo-viscosity Dk = (k/k−)−α + (k/k+)β

• Exponential Runge-Kutta temporal scheme, stiff system
dt ≪ 1/ max(k2, Dk) dt ∼ 1/ max(k2, Dk)



FROST code: powerful tool for simulating GPE

• Vortices, vortex tracking 10243

Quantum 
vortices

Density fluctuations

Müller, N. P., & Kr stulovic, G.  Phys. Rev. B 102, 134513 (2020)

Polanco, J. I.,Müller, N. P., & Kr stulovic, G.  Nature 
Communications, 12(1), 7090 (2021)

Müller, N. P., & Kr stulovic, G.  Phys. Rev. Lett. 132, 094002. 
(2024)

10°2 10°1 100

kª

10°6

10°5

10°4

10°3

10°2

10°1

E
(k

)

EI
kin

k°5/3

in
te

r-
vo

rt
ex

 
di

st
an

ceKolmogorov 
(classical) cascade

Kelvin wave 
cascade

k−5/3
k−5/3

E
in

c
ki

n(
k)

Non-local high-order nonlinearity GPE

• 3D Kolmogorov turbulence 
• 2D Kolmogorov turbulence 

20483

81922

https://gkwork.slack.com/files/UQH1TD4EB/F015L4GGT43/incompressible_spectra1024.pdf?origin_team=T90BUHR33&origin_channel=DQF620EL8


GPE simulation .vs. WKE simulation

3D GPE + forcing + dissipation
WKE + forcing + dissipation

Simulating WKE

Quick and precise test for theoretical derivation
Inspire new solutions



How to “see” waves 

3D GPE numerical simulations, spatio-temporal density spectra

1
τ L
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FIG. 3. Spatio-temporal spectral density of ψ (r, t ) over the time
interval [12,18].

the linear-wave dispersion relation, and 2N is the shift induced
by the nonlinearity (this shift is shown in the small plot).

Moreover, because of the nonlinearity, a broadening of the
frequency can be observed around ω̃(k): sufficiently narrow
broadening implies the weak-wave regime. One can measure
the nonlinear frequency broadening δ(k) directly from the
spatial-temporal spectral density. Here, we define δ(k) for
each fixed k in such a way that the integration of the spectral
density over the interval of the width δ(k) centered at the
ω-peak gives the value 0.99. To capture such information, the
length of the time window Tw of FFT should be larger than
both linear and nonlinear timescales, which are 2π

ω(k) and 2π
δ(k) ,

respectively. Meanwhile, Tw should not be too large so that
the spectrum does not vary much over Tw in order to provide
good accuracy.

100 101

k

10−1

100

101

102

103

δ(
k
)

ω(k)

∆ω(k)

FIG. 4. Frequency broadening δ(k) (blue points) obtained from
the spatial-temporal spectral density over the time interval [12,18].

Figure 4 presents the frequency broadening δ(k) obtained
from Fig. 3. We choose the time window t ∈ [12, 18] around
t = 15, when the GPE gives good agreement with the WKE.
The weak WT theory, on the one hand, requires the nonlin-
ear timescales to be much greater than the linear ones [this
amounts to the constraint δ(k) < ω(k)]. On the other hand, for
solutions of the GPE in the discrete Fourier space to be in the
continuous k-space regime assumed by the weak WT theory,
δ(k) should be greater than the frequency distance between
the adjacent wave modes, %ω(k) = 2k%k. This condition is
necessary to excite the nonlinear resonant and quasiresonant
interactions among waves [1]. (For more discussion about the
role of the quasiresonant interactions, see also [35–40].) One
can see that there is a significant k-range for which most of the
points (k, δk) lay in the domain bounded by ω(k) and %ω(k).

It is interesting to see that δ(k) is greater than ω(k) at small
k’s, which implies strong nonlinearity in the largest scales.
However, Fig. 1 shows that the wave-action spectrum is small
in this range. It reminds us that the “weak wave turbulence”
assumption exactly means weakly nonlinear waves rather than
weak waves: even if a particular mode is very weak, the linear
term at its wave number can be overpowered by the nonlin-
ear term because the former is proportional to the frequency
(which is small at small k’s) and the latter is enhanced by
contributions from the other modes in the system.

One can also observe in Fig. 4 that δ(k) sinks around
k = 22 (where the initial waves have maximum amplitudes)
and some of the points fall even below the %ω(k) line. This
is because the initial waves generate continuous cascades
toward both low and large wave numbers. When δ(k) falls
below the %ω(k) line, the discreteness of the k-space becomes
significant, and deviations from the weak WT theory should
be expected.

Thus we can see in Fig. 4 that the range of wave numbers
where the weak WT theory assumptions are satisfied at t ∼ 15
is approximately 2 ! k ! 20. This range becomes narrower
for larger times.

B. GPE and WKE comparison for the long-time evolution

Having observed a very good quantitative agreement be-
tween the numerical solutions of the GPE and the WKE at
the times up to about two kinetic times, we would now like to
prolong the computations to longer times to see how such an
agreement gradually degrades, and if a qualitative similarity
survives at the late stages. In Fig. 5 centroids and related
typical widths are plotted up to t = 100. The centroids of
wave-action spectra start to deviate a little earlier than those
of energy spectra. At late times, the former exhibits larger
deviations. The typical widths %KN and %KE show even better
correspondence—the curves obtained by the GPE and the
WKE go very close until t ≈ 50.

The comparison of the spectra obtained by solving the
GPE and the WKE until t = 100 is given in Fig. 6. The
disagreement between the GPE and the WKE takes place at
both low values and high values of k starting around t = 40.
Overall, the GPE is faster than the WKE for the direct cascade,
but slower for the inverse cascade. This trend can also be
observed in Fig. 5—the evolution of KN of the GPE to small
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Steady direct energy cascade: log-correction

Phenomenologically, one can heal the divergence with a IR cut-off  and -correction: kf log
nk ∝ k−3 log−1/3(k/kf)

Dyachenko, et al. Physica D 57 (1992)
Kraichnan (2D enstrophy cascade)

Direct energy cascade KZ spectrum

nk = Cd |PO |1/3 k−3 log−1/3(k/kf)

With  a universal constantCd ≈ 5.26 × 10−2

Analytically, we find for k ≫ kf

 

logarithmically divergent for ,    fake solution!!!

Pk = ∫
k

0
16π4A3κ8−6xI(x)dκ

nk ∼ k−3

nk = Ak−2x , Stk = 4π3A3k4−6xI(x) , nk = Ak−2xP = Ak−3

dimension analysis

2
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FIG. 1: I(x) and IZT(x) in the window of convergence.

Function IZT(x) has two zeros: x = 3/2 (y = 1) corresponding to the forward cascade of energy n! = A !
�3/2 and

x = 7/6 (y = 0) — to the inverse cascade of particles n! = A !
�7/6. However, the ZT is not an identity transformation

and, therefore, these candidates to the stationary solutions must be checked by substituting them into the original
integral I(x) and making sure that the resulting integral is convergent and equal to zero. Physically, such an integral
convergence means that wave quartets with similar values of the frequencies dominate the nonlinear evolution; hence
this property is called the interaction locality. Mathematically, violation of locality (convergence) simply means that
the considered spectrum is not a valid solution.

It was shown in [3] that I(x) is convergent for 1 < x < 3/2. Fig. 1 plots I(x) and IZT(x) calculated numerically for
x  3/2. It is easy to see that the two integrals do coincide in the interval 1 < x < 3/2. Therefore, the inverse cascade
spectrum n! = A!

�7/6 is local, and it is a valid mathematical solution of the WKE. It is also interesting to note
that I(3/2) is actually convergent, and its value can be derived analytically (see Sec. III). The finite non-zero value
of I(3/2) implies that, although the collision integral of the WKE is convergent for x = 3/2, the power-law (direct
cascade) spectrum with this exponent is not an exact stationary solution of the WKE. However, with a logarithmic
correction this spectrum can be made a valid asymptotical solution for the direct cascade (see Sec. III).

II. DERIVATION OF THE KOLMOGOROV-ZAKHAROV CONSTANT Ci FOR THE INVERSE
CASCADE

In order to get the KZ constant for the inverse cascade, we rewrite the WKE in the particle conservation form:
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Here we replace I(x) with IZT(x) for simplicity since that the two are equal for 1 < x < 3/2. The particle flux by
definition is
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In the limit y ! 0 , x ! 7/6, when the wave system goes to the stationary state with a constant (frequency-
independent) Q, by the L’Hopital rule, we obtain Q = 8⇡

4
A

3
I

0
ZT (7/6)/3, where prime stands for the x-derivative.

This leads to
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Calculating the x-derivative, we find
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Steady direct cascade: numerical simulations

3

Constant energy flux requires x = 3/2 and z = �1/3,
giving P0 = �16⇡4

B
3
I(3/2). Finally, we obtain the log-

corrected KZ spectrum for the direct cascade and the
universal pre-factor as

nk = CdP
1/3
0 k

�3 ln�1/3 (k/kf) , Cd ⇡ 5.26⇥10�2
. (12)

All the details for the derivation of KZ spectra can be
found in the SM.

Note that previous GPE numerical simulations in the
direct cascade setting [14, 15], reported a reasonable
agreement with the �3 power-law scaling of (12), but
the numerical resolution was rather limited and no log-
correction was observed or discussed. In numerical sim-
ulations of Ref. [7], a steeper scaling with exponent close
to �3.5 was reported, which was similar to the exper-
imental result discussed in the same paper. The scale
separation there was also relatively modest, and no ex-
planation was given for the steeper spectrum. As for the
inverse cascade, to date there have been no numerical
simulations or experiments done.

We perform numerical simulations of the forced-
dissipated GPE using the standard massively-parallel
pseudo-spectral code FROST [16] with a fourth-order Ex-
ponential Runge-Kutta temporal scheme (see [12]). We
use grids of N

3
p collocation points, with Np = 512 and

Np = 1024 to verify the numerical convergence. We add

a forcing term Fk(t) and a dissipation term �Dk
b k(t) to

the Fourier transform of the RHS of GPE (1). The forc-
ing term is supported on a narrow band around the forc-
ing wavenumber kf and it obeys the Ornstein–Ulenbeck
process dFk(t) = �� b kdt + f0dWk, where Wk is the
Wiener process. The parameters � and f0 control the
correlation time and the amplitude of the forcing respec-
tively. Naturally, kf is taken small for the direct cascade
and large for the inverse one. Dissipation is of the form
Dk = (k/kL)�↵ + (k/kR)� , and acts at small and large
scales. Moreover, the condensate (k = 0 mode) is dissi-
pated in the same manner with a constant friction D0.
We optimize the parameters of forcing and dissipation
in order to enlarge the inertial range for a fixed reso-
lution, while maintaining simulations well resolved and
minimizing bottlenecks at the dissipation scales. We pay
special attention that forcing is weak enough so that the
system fulfills WT assumptions (See SM for verification).
Tab. I gives numerical parameters. Finally, the k-space
energy and particle fluxes, P (k) and Q(k) respectively,
are computed directly using the GPE (1) (see SM).

We also simulate the WKE with forcing and dissipa-
tion using the code developed in [12, 17]. This code
solves the WKE expressed in wave-frequency !, and uses
a decomposition of the integration domain of the RHS
of Eq. (4) along lines where the integrand has discon-
tinuous derivatives. The WKE is solved in the interval
! 2 [!min,!max], and we set n! = n!min for ! < !min,
and n! = 0 for ! > !max. The WKE is forced by a

case model cascade L Np f2
0 �

1

GPE
direct

2⇡ 512 1.2
20

2 4⇡ 1024 0.1589
3

inverse
2⇡ 512 10�4

0
4 4⇡ 1024 1.26⇥ 10�5

case kf D0 kL ↵ kR �
1, 2 8

103
2.5 2 145 4

3, 4 125 1 0.5 130 6
case model cascade !min !max !f cf
5

WKE
direct 10�5 10 3⇥ 10�4 1

6 inverse 0.1 105 1252 50
case �!f !L ↵ !R � kf
5 3⇥ 10�4 10�4 3 2 4

p
10�3

6 500 10 4 105/4.5 7 125

TABLE I: Parameters for GPE and WKE simulations.

constant-in-time forcing f! = cf G(!), where G(!) is a
Gaussian centered at !f and of width �!f . Dissipation is
introduced by adding the term �[(!/!L)�↵+(!/!R)� ]n!

to the RHS of WKE. For time integration, we use a
new approach inspired by Chebyshev interpolation and
schemes described in [18]. Values of the parameters are
reported in Tab. I. In this Letter, we present solutions
of the WKE in k-variables to simplify comparisons with
GPE data. Standard WKE-based k-dependent fluxes are
given in the SM.
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FIG. 1: Wave action spectra for the direct cascade
compensated by theoretical prediction (12). Data

obtained by GPE at two di↵erent resolutions and by
WKE, respectively. Insets: corresponding energy fluxes
normalized by their values measured in inertial range.

First, we present numerical results for the direct cas-
cade state. Figure 1 displays the stationary wave ac-
tion spectra obtained in simulations of the GPE and the
WKE respectively, both compensated by the theoretical
prediction (12). The insets show their respective scale-
dependent energy fluxes, normalized by P0 measured in

Numerical simulations of forced and 
dissipated 3D GPE and WKE

Direct energy cascade KZ spectrum

nk = Cd |PO |1/3 k−3 log−1/3(k/kf)

With  a universal constantCd ≈ 5.26 × 10−2

P0

3D NLS + forcing + dissipation

WKE + forcing + dissipation



Steady direct cascade: experiments
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Emergence of a turbulent cascade in a quantum gas
Nir Navon1, Alexander L. Gaunt1, Robert P. Smith1 & Zoran Hadzibabic1

A central concept in the modern understanding of turbulence is 
the existence of cascades of excitations from large to small length 
scales, or vice versa. This concept was introduced in 1941 by 
Kolmogorov and Obukhov1,2, and such cascades have since been 
observed in various systems, including interplanetary plasmas3, 
supernovae4, ocean waves5 and financial markets6. Despite much 
progress, a quantitative understanding of turbulence remains a 
challenge, owing to the interplay between many length scales that 
makes theoretical simulations of realistic experimental conditions 
difficult. Here we observe the emergence of a turbulent cascade 
in a weakly interacting homogeneous Bose gas—a quantum fluid 
that can be theoretically described on all relevant length scales. 
We prepare a Bose–Einstein condensate in an optical box7, drive 
it out of equilibrium with an oscillating force that pumps energy 
into the system at the largest length scale, study its nonlinear 
response to the periodic drive, and observe a gradual development 
of a cascade characterized by an isotropic power-law distribution 
in momentum space. We numerically model our experiments using 
the Gross–Pitaevskii equation and find excellent agreement with 
the measurements. Our experiments establish the uniform Bose 
gas as a promising new medium for investigating many aspects 
of turbulence, including the interplay between vortex and wave 
turbulence, and the relative importance of quantum and classical 
effects.

Compared to classical fluids, superfluids present fascinating peculiar-
ities such as irrotational and frictionless flow, which raises fundamental  
questions about the character of turbulent cascades8,9. Numerous 
experiments on quantum-fluid turbulence have been performed with 
liquid helium, exploring both vortex8,10–12 and wave turbulence13–15, 
but their theoretical understanding is hampered by the strong interac-
tions that make first-principles descriptions intractable. The situation 
is a priori simpler for an ultracold, weakly interacting Bose gas, which is 
often accurately described by the Gross–Pitaevskii equation (GPE) for 
the complex-valued matter field ψ(r, t) (where r =  (x, y, z) is the spatial 
position and t is time; ref. 16). This equation is widely used to model 
turbulence in quantum fluids17–21, but the numerical results have been 
lacking experimental validation. Experimentally, qualitative evidence 
for turbulence has been seen in quantum gases22–25, but quantitative 
comparisons with theory were hindered by the inhomogeneous density 
that results from harmonic trapping. Here we eliminate this problem 
by studying turbulence in a homogeneous quantum gas.

The basic idea of our experiment is outlined in Fig. 1. We prepare a 
quasi-pure Bose–Einstein condensate (BEC) of 87Rb atoms in a cylin-
drical optical box7, and drive it out of equilibrium with a spatially uni-
form, oscillating force that primarily couples to the lowest, dipole-like 
axial mode. Our box has length L =  27(1) µ m and radius R =  16(1) µ m 
(here and elsewhere, errors represent 1σ uncertainties). For our typical  
atom number N ≈  105, the initial, equilibrium BEC has a chemical 
potential µ/kB ≈  2 nK (where kB is the Boltzmann constant), interaction 
energy per particle Eint/kB ≈  1 nK and negligible kinetic energy, while 
the critical temperature for Bose–Einstein condensation is Tc ≈  50 nK. 
The driving force is provided by a magnetic field gradient that creates 
a potential U(r) =  ∆Uz/L, where the coordinate z is along the axis of 

the box (Fig. 1a). The natural scale for ∆ U, separating weak and strong 
drives, is set by µ.

Numerical simulations in Fig. 1a show the microscopic behaviour 
of a shaken trapped gas, which gradually changes from simple uni-
directional sloshing along z to an omnidirectional turbulent flow; in 
addition to the wave-like motion, we observe vortex lines (depicted in 
red), which are detected by computing the local circulation. (Snapshots 
of the turbulent flow do not obey the cylindrical symmetry of the 
(time-dependent) Hamiltonian. In real physical systems, any such 
symmetry is always broken by imperfections; in our simulations the 
symmetry breaking is provided by the position of the numerical grid.) 
Here the shaking amplitude is ∆ U/µ =  1 and the longest shaking time 
ts =  2 s corresponds to 16 driving periods.

Experimentally, we probe the global properties of the gas by releasing 
it from the trap and imaging it along a radial direction (x) after a long 

1Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.
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Figure 1 | From unidirectional sloshing to isotropic turbulence.  
a, Gross–Pitaevskii simulations of a shaken, box-trapped Bose gas. The 
blue shading indicates the gas density; the red lines indicate vortices. 
b–d, Experimental absorption images taken along x after 100 ms of TOF 
expansion, with N ≈  8 ×  104 atoms (upper panels), and the corresponding 
angular distributions p(θ), averaged over 20 images taken under identical 
conditions (lower panels). b, Initial BEC; c, after shaking for 2 s at 8 Hz 
with amplitude ∆ U/µ ≈  1.2; and d, after the turbulent cloud was allowed 
to relax for 1.5 s. The dashed circle in c corresponds to an expansion 
energy of kBTc/2. In the lower panels, the red lines correspond to the 
diamond-like and isotropic distributions depicted in the insets.
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observably lower than ωres. We empirically find that an upper bound 
on ωres (dashed green line in Fig. 2c) is obtained by calculating ωHD for 
an effective BEC volume that excludes the region within ξ of the trap 
walls. Finally, we linearize the GPE around the ground-state BEC solu-
tion for our box trap and numerically solve the resultant Bogoliubov 
equations (see Methods). These solutions are shown as the grey shaded 
area in Fig. 2c, which accounts for the experimental uncertainty in the 
box size. We find excellent agreement with the data, without any adjust-
able parameters.

In Fig. 2d, e we show measurements for driven oscillations with 
different drive strengths. Increasing ∆ U shifts and broadens the res-
onance, and both trends are reproduced by our GPE simulations (red 
bands in Fig. 2e); for very large ∆ U the classical-field GPE approxi-
mation may gradually break down. The line broadening, seen for any 
non-zero ∆ U, indicates nonlinear coupling to other modes, which 
provides the route for the transfer of excitations into other directions 
and a direct cascade.

In the inset of Fig. 2e we plot the anisotropy of the TOF expansion 
∫ θ θ= / − / πA p(1 2) ( ) 1 (2 ) d   (see Methods) for 4 s of resonant driving.  

For ∆ U ≳ 0.8µ we observe the isotropic expansion (A ≈  0) that quali-
tatively signals turbulence. A key quantitative expectation for an iso-
tropic turbulent cascade is the emergence of a steady-state power-law 
momentum distribution: n(k) ∝  k−γ, where γ is a constant28. Owing to 
the line-of-sight integration in absorption imaging, this corresponds 
to an in-plane distribution ∝ γ− −!n k k( ) ( 1).

In Fig. 3 we present our study of !n k( ) observed after a resonant drive. 
An isotropic expansion (from an anisotropic container) necessarily 
means that the in-trap kinetic energy dominates over the interaction 
energy, which in turn means that the TOF expansion can provide an 
accurate measure of the in-trap momentum distribution. Specifically, 
defining kr ≡  mr/(ħtTOF), where r is distance from the centre of mass 
in TOF, !n k( )r  should closely correspond to the in-trap !n k( ) (see 
Methods, Extended Data Fig. 1). However, this correspondence does 
not hold for very low momenta (kr ≲ klow ≡  mL/(ħtTOF)), owing to the 
convolution of the TOF distribution with the initial (in-trap) cloud 
shape. The highest momentum in our clouds ħ≡ /k mU( 2 )high 0  is set 
by the trap depth U0 ≈  kB ×  60 nK, which corresponds to an energy sink.

In Fig. 3a we show an example of !n k( )r , for ∆ U/µ =  1.1(1) and ts =  4 s 
(black line in the main panel and lower inset), obtained by averaging 

over 20 images and also performing an azimuthal average. Vertical red 
lines indicate the klow and khigh boundaries. Away from these bounda-
ries we observe a power-law behaviour, with γ ≈  3.5. This behaviour is 
even more visually evident in the lower inset, in which we plot 

γ − !k n k( )r r
10 , with γ0 ≡  3.5. In the top inset in Fig. 3a we show the result 

of GPE simulations (for ∆ U/µ =  1), which also exhibit a power-law 
distribution. Moreover, the experiment and simulations are consistent 
with the same value of γ.

In Fig. 3b we present the evolution of !n k( )r  towards the turbulent 
steady state, as the shaking time is increased. In the inset we show (on 
a linear scale) the total atom populations in the low-k ‘source’ region 
kr <  km and in the range km <  kr <  kM, where the power-law distribution 
is established in steady state (km and kM are boundaries defined in the 
lower inset of Fig. 3a). Initially there is a net transfer of population from 
the source to the cascade region. The population growth in the cascade 
region means that the population flux through this k-space range is not 
constant at these early times. However, once the steady state is 
 established, the population in the cascade k range saturates at a constant 
value, while the source is still slowly depleted. This is indeed what is 
expected for a direct cascade, in which a constant, k-independent 
 population flux passes from the source, through the cascade range, to 
the high-k sink; formally, this population flux, for a given energy flux, 
should tend to zero as the sink is moved towards infinite energy28. (For 
a non-infinite-energy sink, one strictly speaking has a quasi-steady 
state, because at very long times the source would be too depleted to 
support a constant-flux cascade.)

We further cross-validate our experiments and first-principles cal-
culations by fitting the cascade exponent γ in the range km <  kr <  kM. 
In Fig. 3c we show that, for ∆ U/µ ≈  1, the experiment and simula-
tions exhibit very similar evolution with the shaking time, and reach 
a steady-state value of γ after ts ≈  2 s. In Fig. 3d we plot the measured 
and simulated γ values versus the shaking amplitude for fixed ts =  4 s. 
Here we see that the steady-state value of γ is essentially independent 
of ∆ U, reinforcing the robustness of our conclusions (for small ∆ U 
the steady state is not reached for ts =  4 s; see also the inset of Fig. 2e).

We lastly discuss our findings in the context of previous theoretical 
work. The γ we observe in both the experiment and simulations is close 
to one of the scarce analytical predictions—the Kolmogorov–Zakharov 
direct-cascade exponent γ =  3, for the weak-wave turbulence of a 
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Figure 3 | Development of a turbulent cascade. a, Momentum 
distribution of the turbulent gas (solid black line), for N =  7(1) ×  104,  
∆ U/µ =  1.1(1), ts =  4 s, ω/(2π ) =  9 Hz and tTOF =  100 ms. The vertical red 
lines indicate the momentum resolution klow (left) and the energy sink at 
khigh (right); the dashed blue line is a guide to the eye, offset from the data 
for clarity. Lower inset, compensated spectrum γ − !k n k( )r r10  with γ0 =  3.5 (in 
log–log scale); km and kM define the fitting ranges used in b–d. Upper 
inset, steady-state distribution from GPE simulations, for ∆ U/µ =  1.  
b, Dynamics of !n k( )r  towards the steady state, for ∆ U/µ  =  1.1(1). Inset, 

total atom population for kr <  km (the low-k ‘source’; green), and for 
km <  kr <  kM (in the cascade region; yellow). At long times (solid lines) 
Ṅsource =  −3.6(1.5) atoms ms−1, whereas Ṅcascade =  − 0.2(3) atoms ms−1 is 
consistent with zero. All populations are corrected for losses due to the 
collisions with the background gas in the vacuum chamber (see Methods). 
c, Exponent γ versus shaking time in experiment (blue, ∆ U/µ =  1.1(1)) 
and simulations (red, ∆ U/µ =  1). d, Exponent γ versus shaking amplitude 
in experiment (blue) and simulations (red), for ts =  4 s.
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Steady direct cascade: experiments
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dimensional KZ solution for direct cascade

C4 = Cd/(16π2)1/3

nk = nak−3 log−1/3(k/kf)

na = C4 ( ϵm2

ℏ3a2 )
1/3

Equation of state

N = V ∫ 4πk2nkdk

 + forcing + 

dissipation

iℏ
∂ψ
∂t

= −
ℏ2

2m
∇2ψ + U(x)ψ + g |ψ |2 ψ



nk(t) = t−1/2−2bf̃(η) with η = k/tbConvert to nk(t) = n(k, t)

n2D(k, t) = t−1/2−b ̂f(η) with η = k/tbConvert to n2D(k, t)

∂nrad
k

∂t
= 2π∫

min (k, k1, k2, k3)
k k1k2k3

nrad
k nrad

k1
nrad

k2
nrad

k3
δ(ω01

23)( k2

nrad
k

+ k2
1

nrad
k1

− k2
2

nrad
k2

−
k2

3

nrad
k3 ) dk1dk2dk3

Isotropic WKE for the radial 

Direct cascade’s capacity is infinite   E = 4π∫
∞

kf

k2ωkk−3 ln−1/3(k/kf) dk = ∞

nrad(k, t) = t−1/2f(η) with η = k/tbself-similar solution of the first kind

b = λ/3 + 1/6 , if E(t) ∼ tλ

nrad
k = 4πk2 nk = k n2D(k)

First-kind self-similarity in the direct range

• Free system: E = const  
• Forced system: E ~ t 

⟶ b = 1/6
⟶ b = 1/2

Stationary spectra in the wake:    RJ for the free case,     KZ for the forced case.
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Experimental observations

a = 0.4(1) , b = 0.14(2)
García-Orozco A D, Madeira L, Moreno-Armijos M A, et al. Physical Review A, 2022, 106(2): 023314.

a = 0.3(1) , b = 0.2(4) , n(k) ∼ k−2

• Spectrum behind the front is RJ

• Perfect collapse with the predicted self-similar shape
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Forced direct cascade evolution

• Spectrum behind the front is direct-cascade KZ

• Perfect collapse with the predicted self-similar shape

WKEGPE

k

Relevant experiment 
Navon, Science 366, (2019)

GPE

WKE



Steady inverse particle cascade

3

which value can be computed using Mathematica. Passing (10) to wave number variable k, we get nk = Ci|Q|1/3
k

�7/3,
where Ci reads
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(12)

where �(·) is the Gamma function, and pFq (a1, . . . , ap; b1, . . . , bq; z) is the generalized hyper-geometric function.

III. DERIVATION OF THE DIRECT ENERGY CASCADE KOLMOGOROV-ZAKHAROV SPECTRUM

To illustrate the mathematical issues of the direct energy cascade KZ solution, we first assume a pure power-law
form of the spectrum. We rewrite the WKE in the energy conservation form:

@
�
2⇡!

3/2
n!

�

@t
= �@P (!, t)

@!
⌘ 8⇡

4
A

3
!

�3x+7/2
I(x) , (13)

where the original collision integral I(x) is kept instead of IZT(x) because of the departure of these two at x = 3/2,
the value corresponding to the direct energy cascade. Then, the energy flux is by definition

P (!, t) =

Z !

0

⇣
�8⇡

4
A

3
!̃

�3x+7/2
I(x)

⌘
d!̃ . (14)

As illustrated in Fig 1, I(3/2) 6= 0. Actually, it can be computed using Mathematica, which gives

I(3/2) =

Z

q1,q2,q3>0

min (1, q1, q2, q3)
1/2 (q1q2q3)

�3/2
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1 + q
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1
� q

3/2

2
� q

3/2

3

⌘
�
�
q
01

23

�
dq1 dq2 dq3 = �4⇡ +16 ln 2 . (15)

The fact that I(x) is discontinuous at 3/2, and that the value of either I(3/2), or I(3/2�) — equal to IZT(3/2�), where
x = 3/2� means the limit x ! 3/2 taken from below (see Fig. 1), – is nonzero and finite results in inapplicability of
the L’Hopital rule for calculating the limit x ! 3/2 (supposing x < 3/2), i.e. we cannot use the same procedure to
compute Cd as we used before for the calculation of Ci. Moreover, Eq. (14) gives a logarithmically divergent energy
flux integral after substituting x = 3/2. The divergence of flux at finite frequency can be avoided by cutting the
integral o↵ at the forcing frequency !f = k

2

f
, which leads to

P =

Z !

!f

�
�8⇡

4
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3
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�1
I(3/2)

�
d!̃ = �8⇡
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. (16)

However, the flux P must be independent of ! for steady state solutions. This is clearly not the case in the above
expression, which is another indication that n! ⇠ !

�3/2 is not a valid stationary solution of the WKE.
To remove the !-dependence term ln !

!f
in (16), we introduce a logarithmic correction and seek solution as n! =

C!
�x lnz !

!f
. Applying the cut-o↵ at !f , the energy flux becomes
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For ! � !f , we note that the main contribution comes from !̃ ,!1 , !2 , !3 � !f ; then ln !̃
!f

⇡ ln !1
!f

⇡ ln !2
!f

⇡ ln !3
!f

⇡
ln !

!f
. Thus, we obtain

P = � 8⇡
4
C

3
I(x) ln3z !

!f

Z !

!f

!̃
�3x+7/2 d!̃ . (18)

Inverse particle cascade KZ spectrum

nk = Ci |QO |1/3 k−7/3

With  
a universal constant

Ci ≈ 7.5774045 × 10−2

Q0

3D GPE + forcing + dissipation
WKE + forcing + dissipation



Steady inverse cascade: numerical simulations

4

the range where P (k) is approximately constant. The
same values of P0 are used in (12). The values of kf ,
as presented in Tab. I, are selected within the range of
forcing. For comparison, we also plot the compensated
KZ spectra ⇠ nkk

3 (ignoring the non-locality issue) and
⇠ nkk

3.5 for the GPE data with Np = 1024. We see an
excellent agreement between (12) and GPE and WKE
data including the value of the constant Cd. The ver-
tical dotted line denotes the wave vector k⇠ where the
nonlinear term in the GPE becomes equal to the linear
one. WT prediction is expected to be valid at k > k⇠

only. Further, the asymptotic result (12) is assumed for
k � kf . Interestingly, the theoretical log-corrected KZ
spectrum provides a very good fit to the numerical re-
sults even at the scales k . k⇠ ⇠ kf . Note that GPE
data with Np = 1024 present a relatively good agree-
ment with k

�3.5 too, although in a much narrower range
and only at low k, which is consistent with the results
reported in [7].

Next, we study the inverse cascade state. Figure 2
shows the wave action spectra and the particle fluxes
Q(k) (on insets normalized by |Q0|) obtained in GPE
and WKE simulations. Spectra are compensated by the
theoretical prediction (10) including the value of the pre-
factor Ci. Again, for GPE data we mark k⇠ by a vertical
dotted line. For both GPE and WKE we see a significant
range (within the constant-Q region) where the compen-
sated spectra have plateaus, which confirms the predicted
spectrum (10). The agreement between theory and nu-
merics is almost perfect for WKE data and within 5% for
GPE. Note that in both simulations we see a ”bump” on
the left part of the spectrum, which could be attributed
to an infrared bottleneck caused by the nature of the
hypo-viscous dissipation.
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FIG. 2: Wave action spectra for the inverse cascade
compensated by theoretical prediction (10). Data

obtained by GPE at two di↵erent resolutions and by
WKE, respectively. Insets: corresponding particle fluxes
normalized by their values measured in inertial range.

Finally, to check the reliability of our predictions in
a setting closer to experiments, we study the direct and
inverse cascades for BEC trapped in a cubic box. To this
end, while solving (1) we consider a trapping potential
U(x) that vanishes inside the box and increases rapidly
at the borders of the cube (see SM for an exact defini-
tion). Figure 3 (a) displays a two-dimensional cut of a

Ltrap

(a)
U(x)| (x)|2

Ltrap
x

(a)
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n
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n
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f) ⇣
ktrap
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⌘

(b)
direct cascade
inverse cascade

FIG. 3: GPE simulations of turbulent trapped BEC.
(a) Two-dimensional cut of a typical simulation

(arbitrary units and scales). The trapping potential is
displayed in red and density fluctuations in blue. (b)
Wave action spectra normalized by their values at the

respective forcing scales kf for the direct and the inverse
cascades. The solid lines display the theoretical

predictions (10,12). The vertical lines show the wave
number ktrap = 2⇡/Ltrap for both of the cascades, with

Ltrap the trap size.

typical simulation where we plot the trapping potential
and the wave-field. We keep the same forcing and dis-
sipation schemes and the parameters of case 1 and case
3 in Tab. I respectively. The results for both the direct
and the inverse cascades are shown in Fig. 3, superim-
posed with the theoretical KZ spectra (solid lines) with-
out any fitting parameters. Once again, one can see a
nearly perfect agreement, which indicates robustness of
our theoretical predictions and their relevance to the past
and future experiments on BEC turbulence. It might be
convenient for comparison with experiments to rewrite
our predictions (12, 10) in dimensional form. In terms of
the reduced Planck constant ~, the interaction constant

Numerical simulations of forced and dissipated 
3D GPE and WKE

Inverse particle cascade KZ spectrum

nk = Ci |QO |1/3 k−7/3

With  
a universal constant

Ci ≈ 7.5774045 × 10−2

k

forcing

hyper-viscosityfriction + hypo-viscosity



Second-kind self-similarity in the inverse range
Isotropic WKE for the radial spectrum:∂nrad

k

∂t
= 2π∫

min (k, k1, k2, k3)
k k1k2k3

nrad
k nrad

k1
nrad

k2
nrad

k3
δ(ω01

23) ( k2

nrad
k

+ k2
1

nrad
k1

− k2
2

nrad
k2

−
k2

3

nrad
k3 ) dk1dk2dk3

Inverse cascade’s capacity is finite   N = 4π∫
kmax

0
k2k−7/3 dk < ∞

nrad(k, t) = τ−1/2g(η) with η = k/τm , τ = t* − tself-similar solution of the second kind

Satisfying  f(η) → η2 for η → 0 and f(η) → η−x* for η → ∞ . x * = 1/2m

Take x* = 0.5 nrad
k (t) = τ−1/2g(k/τ) , nrad

k (t) ∼ k−0.5

nk(t) = τ−2.5g̃(k/τ) , nk ∼ k−2.5Convert to nk(t) = n(k, t)

Convert to n2D(k, t) n2D(k, t) = τ−1.5 ̂g(k/τ) , n2D(k, t) ∼ k−1.5

Candidates of    (steady inverse KZ scaling )x* = 0.5, 0.44 , 0.48 , 0.56 > 1/3
Semikoz and Tkachev 
1995, Lacaze et al 2001.

Semisalov et at 2021.

Shukla and SN 2020.
Moreno-Armijos M A et al 
2004. x* = 0.6



Free inverse cascade evolution
WKE GPE

In self-similar regime,  as G(τ) = lim
k→0

nrad(k, t)τ1/2+2m → const τ → 0

WKE

GPE

Free and forced systems behave the same because 
of the “infinite” reservoir of N at high k.

What do forced systems look like ?

k



Relaxation to steady inverse KZ solution (GPE)
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Blowup and Condensation

For  no blowup!E/N > (E/N)c =
k2

max

3
:

nk =
A(t)

ωk + |μ |
Asymptote to a steady state RJ spectrum

GPE WKE

E/N < (E/N)c =
k2

max

3
Blow-up condition:



Stationay KZ spectra   Self-similar solutions                 

4-Waves
Dimension D=3

Direct energy 
cascade

inverse particle 
cascade

nk = Cd |P0 |1/3 k−3 log− 1
3 (k/kf)

Cd ≈ 5.26 × 10−2

nk = Ci |QO |1/3 k−7/3

Ci = 7.5774045 × 10−2

nrad(k) = 4πk2 nk

t1/2nrad(k, t) = f(k/tb)

b = λ/3 + 1/6 , if E(t) ∼ tλ

τ1/2nrad(k, t) = g(k/τm) , τ = t* − t
m = 1/(2 x*), , if nrad(k) ∼ k−x*

kξ ≫ 1

Summary of WWT predictions

                     Acoustic limit                                                 Short wave limit 

3-Waves
Dimension D=3

3-Waves
Dimension D=2

kξ ≪ 1 kξ ≫ 1

Ek = C1c1/2
s P1/2

0 k−3/2

C1 = 3cs/(32V2
0π(π + 4 ln 2 − 1))

Ek = C2c1/2
s ξ5/2P1/2

0 k
C2 = 23/4/ π(π − 4 ln 2)

Ek = CEc1/2
s a1/2P1/2

O k−1

CE = 61/4 cs /πV0 , a = ξ/2

nk ∼ k− 11
2 nk ∼ k−3

nk ∼ k−3



Towards Strong Wave Turbulence
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• Steady spectra for the inverse cascade
• KZ scaling survives for 100 times 

bigger wave amplitude, and  bigger 
flux !

• The constant survives as long as KZ 
scaling occurs for the scales below 
the healing length
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Critical Balance

• Critical balance (CB):  equating the 
linear and the nonlinear terms of NLS

• Expected for scales around the 
healing length

• KZ for small scales
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What is this?

• Is this universal?
• For small k:  acoustic?
• For large k:  warm cascade?
• Why is it tricky?
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Evidence for Strong Wave Turbulence
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