American Physical Society APS Published by

13

Volume 130, Number 13

Ying Zhu collaborating with Giorgio Krstulovic and Sergey Nazarenko

Institute de Physique de Nice Université de Côte d'Azur, CNRS, Nice, France

Gross-Pitaevskii Equation (AKA: Nonlinear Schrödinger Equation)

$$
Bose-Einstein \qquad \qquad \frac{\partial \psi(r,t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(r)
$$

Bose-Einstein in die V condensates (BEC)

One simple equation for many physical systems

Klaers et al, Nature 2010. (both cold), intensity pictures for inferior coldinations of the non-gip of 13.3 (*c*), 10.3 (*c*), 7.1 (*c*), 7 is fixed by maintaining a constant applied voltage bias of 500 V. (bottom row) intensity pictures for initial wave kinetic energies *E/N* of 13.3 (**a**), 10.4 (**b**), 7.1 (**c**), 4.6 (**d**) and 1*.*8m¹ (**e**). The nonlinear interaction strength

 $\nabla^2 \psi(\mathbf{r}, t) + U(\mathbf{r}) \psi(\mathbf{r}, t) + g |\psi(\mathbf{r}, t)|^2$ $\int i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = -\frac{\hbar^2}{2} \nabla^2 \psi(\mathbf{r},t) + U(\mathbf{r}) \psi(\mathbf{r},t) + g |\psi(\mathbf{r},t)|^2 \psi(\mathbf{r},t)$

ch between Molmogorov (strong) turbulence Vortex dynamics and

A symmetry breaking epoch between 10^{-12} and 10^{-6} seconds

Villois, Proment, Krstulovic. White density field. Whi Phys. Rev. Letts. **125**, dered in blue-reduced in blue-reduced in blue-reduced in and (2020) and (b) at α τ \sim τ \sim Fig. 2 Kinetic energy spectrum in quantum in quantum and classical turbulence. The classical turbulence \mathcal{L}

 $g > 0$, defocusing case focusing case *g* < 0,

Nonlinear wave interaction in BEC Vonlinear wave inte

Wave Turbulence Theory (WWT)

WWT: mathematical framework describing the statistical behaviour of WT dominated by weakly nonlinear waves.

Wave-kinetic equation: evolution of the wave-action spectrum

WWT formalism

- similar to Boltzmann Equation second-order moment of the wave amplitude
	-
	-

Stage 1: deriving the wave-kinetic equation (WKE), and/or equation for 1-mode PDF Stage 2: analysis based on above equations, KZ spectra, non-stationary evolution, joint PDF, …

Condition to apply WWT: separation of spatial scales and time scales

Towards strong waves: critical balance, wave breaking …

Dual cascade in wave turbulence turbulence

Four-wave regime: dual cascades ZHU, SEMISALOV, KRSTULOVIC, AND NAZARENKO PHYSICAL REVIEW E **106**, 014205 (2022)

$$
N = \int 4\pi k^2 n_k,
$$

- Like in 2D Euler, the ratio of densities of the two invariants is k^2 *d*"**^r** $B = \frac{1}{2}$ *r*2 \exists uld er, the rati
- Mapping 2D Euler to GPE invariants: $E \to N$, $\Omega \to E$.

following expression:

Two invariants
$$
N = \int 4\pi k^2 n_k
$$
, $E = \int 4\pi k^2 \omega_k n_k = \int 4\pi k^4 n_k$

k
2 *k*
2 *k*

 $E \rightarrow N,$

$$
\frac{dn_k}{dt} = \frac{32\pi^3}{k} \int \min(k, k_1, k_2, k_3) \delta_{1\omega}^{23} n_k n_1 n_2 n_3 \left(\frac{1}{n_k} + \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3}\right) k_1 k_2 k_3 dk_1 dk_2 dk_3.
$$

Forcing and dissipation setup

One cascade can not live without the other one !

BEC wave turbulence in a trap

tical dotted line denotes the wave vector *k*⇠ where the

Steady energy cascade

Steady particle cascade

Forcing and dissipation setup

Forcing and dissipation setup

Advanced GPE simulations for wave turbulence dynamics

• Pseudo-spectral method .vs. finite difference scheme

$$
\dot{R}_1^*(t)\hat{\psi}_{k_2}(t)\hat{\psi}_{k_3}(t) + iF_k - iD_k\hat{\psi}_{k}(t)
$$

|*ψ*(*x*, *t*)| 2 (*t*) $|\psi(x,t)|^2 \psi(x,t)$ triply-periodic cube

- De-aliasing and conservation, clean flux
- Stochastic forcing

 $dF_k(t) = -\gamma \hat{\psi}_k dt + f_0 dW_k, \quad N \sim t, E \sim t^2$ ̂

- Hyper-viscosity and hypo-viscosity *^D^k* ⁼ (*k*/*k*−) −*α*
- Exponential Runge-Kutta temporal scheme, stiff system d*t* ≪ 1/ max(k^2 , *D*_{*k*}) → d*t* ∼ 1/ max(k^2 , *D*_{*k*})

• High-resolution, massively-parallel code with MPI/OpenMP $512^3 - 1536^3$

FROST code: powerful tool for simulating GPE

Müller, N. P., & Kr stulovic, G. Phys. Rev. B 102, 134513 (2020) Polanco, J. I., Müller, N. P., & Kr stulovic, G. Nature Communications, 12(1), 7090 (2021) Müller, N. P., & Kr stulovic, G. Phys. Rev. Lett. 132, 094002.

- Vortices, vortex tracking $1024³$
- 3D Kolmogorov turbulence 20483
- 2D Kolmogorov turbulence 81922

(2024)

Non-local high-order nonlinearity GPE

GPE simulation .vs. WKE simulation

3D GPE + forcing + dissipation WKE + forcing + dissipation

Simulating WKE Quick and precise test for theoretical derivation Inspire new solutions

 $\overline{}$

$$
\psi(x, t) = "random waves" \qquad \qquad \text{Fourier tra}
$$

below the %ω(*k*) line, the discreteness of the *k*-space becomes

ZHU, SEMISALOV, KRSTULOVIC, AND NAZARENKO PHYSICAL REVIEW E **106**, 014205 (2022)

Dyachenko, et al. Physica D 57 (1992) Kraichnan (2D enstrophy cascade)

Steady direct energy cascade: log-correction 2

$$
St_k = 4\pi^3 A^3 k^{4-6x} I(x),
$$

$$
I(x), \qquad n_k = Ak^{-2x_p} = Ak^{-3}
$$

 $16\pi^4 A^3 \kappa^{8-6x} I(x)$ d*κ*

dimension analysis

 $logarithmically divergent$ for $n_k \sim k^{-3}$, fake solution!!!

Analytically, we find for $k \gg k_f$ integral *I*(*x*) and making sure that the resulting integral is convergent and equal to zero. Physically, such an integral

the interaction is called the interaction locality. The interaction locality is convergenced that interaction is a simple that interaction of locality (convergence) simulation of locality (convergence) simulation is a sim

$$
n_k = C_d |P_O|^{1/3} k^{-3} \log^{-1/3}(k/k_f)
$$

With $C_{\rm d} \approx 5.26 \times 10^{-2}$ a universal constant cascade) spectrum with this exponent is not an exact stationary solution of the WKE. However, with a logarithmic correction this spectrum can be made a valid as $C_d \approx 5.26 \times$

It was shown in [3] that *I*(*x*) is convergent for 1 *<x<* 3*/*2. Fig. 1 plots *I*(*x*) and *I*ZT(*x*) calculated numerically for

Phenomenologically, one can heal the divergence with a IR cut-off k_f and \log -correction: n_k ∝ k^{-3} log^{-1/3}(k/k_f)

of *I*(3*/*2) implies that, although the collision integral of the WKE is convergent for *x* = 3*/*2, the power-law (direct

Steady direct cascade: numerical simulations ponential Runger Catta Catta directions reported in Tab. I. In this Letter, we present solutions of the WKE in *k*-variables to simplify comparisons with

special attention that for a special attention that the special telephone is the third that the special society

, drive *t*s=2s corresponds to 16 driving periods. **it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear** aking a condensate in a Shaking a condensate in a 3*D* box

difficult. Here we observe the emergence of a turbulent cascade

in a weakly interacting homogeneous Bose gas—a quantum fluid

Navon et al. Nature 539, 72–75 (2016) 0.1

Steady direct cascade: experiments of the turbulent flow do not of (time-dependent) Hamiltonian. In real physical systems, any such symmetry is always broken by imperfections; in our simulations; in our simulations; in our simulations; in our RESEARCH LETTER

 $\frac{1}{\sqrt{2}}$

Steady direct cascade: experiments

dimensional KZ solution for direct cascade $n_k = n_a k^{-3} \log^{-1/3} (k/k_f)$ $n_a = C_4$ $\sqrt{2}$ ϵm^2 \hbar^3a^2 1/3 Equation of state $N = V \int 4\pi k^2$ n_k d k

Dogra, L.H., Martirosyan, G., Hilker, T.A. *et al*. *Nature* **620**, 521–524 (2023).

Direct cascade's capacity is infinite
$$
E = 4\pi \int_{k_f}^{\infty} k^2 \omega_k k^{-3} \ln^{-1/3}(k/k_f) dk = \infty
$$

\nself-similar solution of the first kind $n^{rad}(k, t) = t^{-1/2} f(\eta)$ with $\eta = k/t^b$
\n $b = \lambda/3 + 1/6$, if $E(t) \sim t^{\lambda}$
\nConvert to $n_k(t) = n(k, t)$ $n_k(t) = t^{-1/2 - 2b} \tilde{f}(\eta)$ with $\eta = k/t^b$
\nConvert to $n_{2D}(k, t)$ $n_{2D}(k, t) = t^{-1/2 - b} \hat{f}(\eta)$ with $\eta = k/t^b$
\n• Free system: $E = const \longrightarrow b = 1/6$

• Free system: *E = const* • Forced system: *E ~ t* $\rightarrow b = 1/6$ $\rightarrow b = 1/2$

Stationary spectra in the wake: R for the free case, KZ for the forced case.

Isotropic WKE for the radial
$$
n_k^{\text{rad}} = 4\pi k^2 n_k = k n_{2D}(k)
$$

\n
$$
\frac{\partial n_k^{\text{rad}}}{\partial t} = 2\pi \int \frac{\min(k, k_1, k_2, k_3)}{k k_1 k_2 k_3} n_k^{\text{rad}} n_{k_1}^{\text{rad}} n_{k_2}^{\text{rad}} n_{k_3}^{\text{rad}} \delta(\omega_{23}^{01}) \left(\frac{k^2}{n_k^{\text{rad}}} + \frac{k_1^2}{n_{k_1}^{\text{rad}}} - \frac{k_2^2}{n_{k_2}^{\text{rad}}} - \frac{k_3^2}{n_{k_3}^{\text{rad}}} \right) dk_1 dk_2 dk_3
$$

Direct cascade's capacity is infinite $E = 4$ *π*

 $n_k(t) = t$ \mathcal{L} Convert to $n_k(t) = n(k, t)$ and $n_k(t) = t^{-1/2-2b}\tilde{f}(\eta)$ with a $\eta = k/t^b$

 $n_{2D}(k, t) = t$ $n_{2D}(k, t)$ and $n_{2D}(k, t) = t^{-1/2-b} \hat{f}(\eta)$ with $\eta = k/t^b$

First-kind self-similarity in the direct range

Free direct cascade evolution (GPE)

- Perfect collapse with the predicted self-similar shape
- Theoretical prediction: $n^{rad}(k, t) = t^{-a}f(k t^{-b}), a = 1/2, b = 1/6$
	-
	-
	-
- García-Orozco A D, Madeira L, Moreno-Armijos M A, et al. Physical Review A, 2022, 106(2): 023314.
	-

Forced direct cascade evolution

Steady inverse particle cascade

$$
C_{\rm i} = \frac{1}{2\pi^{3/2}} \Gamma\left(\frac{5}{6}\right)^{1/3} \left[3\Gamma\left(\frac{1}{3}\right) \left(3^{3/2} 2^{2/3} {}_{3}F_{2}\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{3}; \frac{4}{3}, \frac{4}{3}; 1\right) - 8 {}_{3}F_{2}\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}; \frac{4}{3}, \frac{3}{2}; 1\right) \right.\right.
$$

+ $2^{1/3} {}_{3}F_{2}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}; \frac{3}{2}, \frac{5}{3}; 1\right) - 2^{1/3} {}_{4}F_{3}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}; \frac{3}{2}, \frac{3}{2}, \frac{5}{3}; 1\right) \Big)\right]^{-1/3} \approx 7.5774045 \times 10^{-2}$

Inverse particle cascade KZ spectrum
\n
$$
n_k = C_1 |Q_O|^{1/3} k^{-7/3}
$$
\nWith $C_i \approx 7.5774045 \times 10^{-2}$
\na universal constant

hypo-viscous dissipation. Numerical simulations of forced and dissipated 3D GPE and WKE

Steady inverse cascade: numerical sin G . Note that in both simulations we see a \mathbb{R}^n on \mathbb{R}^n on \mathbb{R}^n on \mathbb{R}^n on \mathbb{R}^n on \mathbb{R}^n de: numerical sin to an infrared by the nature of the natu

Second-kind self-similarity in the inverse range

$$
\frac{\partial n_k^{\text{rad}}}{\partial t} = 2\pi \int \frac{\min(k, k_1, k_2, k_3)}{k k_1 k_2 k_3} n_k^{\text{rad}} n_{k_1}^{\text{rad}} n_{k_2}^{\text{rad}} n_{k_3}^{\text{rad}} \delta(\omega_{23}^{01}) \left(\frac{k^2}{n_k^{\text{rad}}} + \frac{k_1^2}{n_{k_1}^{\text{rad}}} - \frac{k_2^2}{n_{k_2}^{\text{rad}}} - \frac{k_3^2}{n_{k_3}^{\text{rad}}} \right) \mathrm{d}k_1 \mathrm{d}k_2 \mathrm{d}k_3
$$

Inverse cascade's capacity is finite $N = 4\pi$ | k_{\max} 0
 $k^2k^{-7/3}$ *dk* < ∞ $\mathsf{self\text{-}similar}$ solution of the second kind $n^{rad}(k,t) = \tau^{-1/2} g(\eta) \quad \text{ with } \quad \eta = k/\tau^m \text{, } \tau = t^* - t$ Satisfying $f(\eta) \to \eta^2$ for $\eta \to 0$ and $f(\eta) \to \eta^{-x^*}$ for $\eta \to \infty$. $\longrightarrow x^* = 1/2m$ Candidates of $x^* = 0.5, 0.44, 0.48, 0.66$

Semikoz and Tkachev 1995, Lacaze et al 2001. Semisalov et at 2021. Shukla and SN 2020. Moreno-Armijos M A et al 2004. $x^* = 0.6$

Take $x^* = 0.5$ $n_k^{\text{rad}}(t) = \tau^{-1/2}$ Convert to $n_k(t) = n(k, t)$

he second kind
$$
n^{rad}(k, t) = \tau^{-1/2} g(\eta)
$$
 with $\eta = k/\tau^m$, $\tau = t^* - t$
\nfor $\eta \to 0$ and $f(\eta) \to \eta^{-x^*}$ for $\eta \to \infty$. $\longrightarrow x^* = 1/2m$
\n= 0.5, 0.44, 0.48, 0.56 > 1/3 (steady inverse KZ scaling)
\nTake $x^* = 0.5$ $n_k^{\text{rad}}(t) = \tau^{-1/2} g(k/\tau)$, $n_k^{\text{rad}}(t) \sim k^{-0.5}$
\nConvert to $n_k(t) = n(k, t)$ $n_k(t) = \tau^{-2.5} \tilde{g}(k/\tau)$, $n_k \sim k^{-2.5}$
\nConvert to $n_{2D}(k, t)$ $n_{2D}(k, t) = \tau^{-1.5} \hat{g}(k/\tau)$, $n_{2D}(k, t) \sim k^{-1.5}$

Free inverse cascade evolution

Relaxation to steady inverse KZ solution (GPE)

Short-tem evolution

Short-tem evolution
 $\frac{2}{\sqrt{1-\frac{1}{2}}}\cos\theta$ without dissipation at low k

Long-term evolution with dissipation at low k

Blowup and Condensation

 E/N Blow-up condition:

$$
N < (E/N)_c = \frac{k_{\text{max}}^2}{3}
$$

$$
\frac{k_{\text{max}}^2}{3}
$$
 in a blowup!

Acoustic limit

 $C_{\rm E} = 6^{1/4} \sqrt{c_s}/\pi V_0$, $a = \xi/2$

3-Waves Dimension D=3 $E_k = C_1 c_s^{1/2} P_0^{1/2} k^{-3/2}$ $C_1 = \sqrt{3c_s/(32V_0^2\pi(\pi + 4\ln 2 - 1))}$ $E_k = C_E c_s^{1/2} a^{1/2} P_O^{1/2} k^{-1}$

Summary of WWT predictions

3-Waves Dimension D=2

$$
k\xi \ll 1
$$

\n $n_k \sim k^{-\frac{11}{2}}$
\n $E_k = C_2 c_s^{1/2} \xi^{5/2} P_0^{1/2} k$
\n $n_k \sim k^{-3}$
\n $C_2 = 2^{3/4} / \sqrt{\pi (\pi - 4 \ln 2)}$

$$
n_k \sim k^{-3}
$$

Towards Strong Wave Turbulence

- Steady spectra for the inverse cascade
- KZ scaling survives for 100 times bigger wave amplitude, and 10^6 bigger flux !
- The constant survives as long as KZ scaling occurs for the scales below the healing length

Critical Balance

- Critical balance (CB): equating the linear and the nonlinear terms of NLS
- Expected for scales around the healing length
- KZ for small scales

What is this?

without dissipation at low **k**

Evidence for Strong Wave Turbulence

Publications

- Physical review letters, 2022, 128(22): 224501.
- Zhu Y, Semisalov B, Krstulovic G, et al. Testing wave turbulence theory for the Gross-Pitaevskii system. Physical Review E, 2022, 106(1): 014205. (**Editors's Suggestion**)
- Zhu Y, Semisalov B, Krstulovic G, et al. Direct and inverse cascades in turbulent Bose-Einstein condensates. Physical Review Letters, 2023, 130(13): 133001. (**Cover Story**)
- Zhu Y, Semisalov B, Krstulovic G, et al. Self-similar evolution of wave turbulence in Gross-Pitaevskii system. Physical Review E, 2023, 108(6): 064207.
- Moreno-Armijos, M. A., Fritsch, A. R., García-Orozco, A. D., Sab, S., Telles, G., Zhu, Y., ... & Bagnato, V. S. (2024). Observation of relaxation stages in a non-equilibrium closed quantum system: decaying turbulence in a trapped superfluid. *arXiv preprint arXiv:2407.11237*.
- Zhu Y, Krstulovic G, Nazarenko S. Turbulence and far-from-equilibrium equation of state of Bogoliubov waves in Bose-Einstein Condensates[J]. arXiv preprint arXiv:2408.15163, 2024.
- Zhu Y, Krstulovic G, Sergey Nazarenko. Transition to strong wave turbulence in Bose-Einstein condensates. (In Preparation)

● Griffin A, Krstulovic G, L'vov V S, et al. Energy spectrum of two-dimensional acoustic turbulence.

